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Abstract

In a local-first architecture that prioritizes availability in the
presence of network partitions, there is a tension between
two goals: merging concurrent changes without user inter-
vention and maintaining data integrity constraints. We pro-
pose a synchronization model called forking histories which
satisfies both goals in an unconventional way. In the case
of conflicting writes, the model exposes multiple event his-
tories that users can see and edit rather than converging to
a single state. This allows integrity constraints to be main-
tained within each history while giving users flexibility in
deciding when to manually reconcile conflicts. We describe
a class of applications for which these integrity constraints
are particularly important and propose a design for a system
that implements this model.
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1 Introduction

Local-first software [8] prioritizes availability: users can
freely access and modify data locally on a client device, then
optionally synchronize that data with other devices when
connected to a network. This architecture enables offline
access, low latency Uls, and other benefits for users, but
also introduces challenges around data consistency, since
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users may concurrently make incompatible edits that must
be reconciled.

There are a variety of existing approaches that help appli-
cation developers grapple with this challenge. For example,
Conflict-Free Replicated Data Types (CRDTs) [12, 13] avoid
conflicts entirely by modeling data in terms of commuta-
tive operations. Meanwhile, systems like Bayou [14] and
Ice Cube [7] allow developers to specify application-specific
logic for detecting and resolving conflicts. Other systems like
Diamond [15] abandon complete local control and provide
only limited offline functionality. While these approaches
differ in the details of the model they expose to developers,
they share a fundamental goal: to ensure that all replicas con-
verge to the same state as quickly as possible given network
availability and to maximally preserve user intent.

Digital gardens pose unique sync challenges. While
existing techniques have proven useful in many contexts, we
argue that they do not offer good solutions for a large class
of applications we call digital gardens, which include media
library managers for photos, music, books, and academic
references; personal knowledge management tools for taking
and organizing notes; and even filesystem browsers. Digital
gardens grow over time, often containing large volumes of
data that make it hard for a user to manually audit the state of
the system. Digital gardens also manage immensely valuable
personal data, where data integrity is paramount.

This combination of features makes it difficult to sync data
in a digital garden application. If the system merges changes
in an undesirable way, the problem can be hard to detect and
can have catastrophic long-lasting implications. Meanwhile,
in order to avoid a tedious user experience, it is essential that
unrelated changes are still merged automatically without
manual action by the user. In Section 2 we demonstrate this
tension with an example scenario of two users editing a
shared photo library.

This problem seems fundamental, but it relates to a key
assumption made by most data sync systems about consis-
tency: that all users should see a single shared state as soon
as possible. We argue that this property is not essential in
digital gardens—although users typically want to eventually
converge to a single consistent view, they can accept ex-
tended periods where they see different views instead. This
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is familiar to any programmer who has used a version con-
trol system like Git: the process of synchronizing changes is
not tightly coupled to merging those changes into a single
history. By relaxing the assumption that end-users would
like to converge immediately upon syncing, we can imagine
new strategies for synchronization.

Achieving data integrity with forking histories. We
propose forking histories: a new model where a synchroniza-
tion layer could expose multiple co-existing states to the user
through the application layer. This would enable entirely
new techniques for managing concurrent writes—changes
could still be automatically merged when possible, but con-
flicts could result in forking histories which users could
inspect, edit, and manually merge back together. It would
allow for maintaining strong consistency within each his-
tory, avoiding problematic merges. At the same time, users
could continue to make progress on any history, not just the
primary one, and have control over when to do the work of
resolving conflicts.

In effect, we decouple the physical and logical synchro-
nization processes: one replica can receive write events from
another and access them if needed, without reconciling them
with the local changes. Instead, we defer the logical reconcil-
iation until the user is ready to perform it, without needing
to take the device offline. We believe this unconventional
model could present an attractive set of tradeoffs in the con-
text of digital garden applications; we elaborate further on
this claim in Section 3.

TreeDB: an instance of forking histories. To concretely
illustrate how this idea might work in practice, in Section 4
we describe the design of a proposed synchronization system
called TreeDB that implements the forking history model.
Instead of computing a single consistent state across repli-
cas, we compute a shared tree of reified write events that
represents multiple possible histories, each one internally
consistent and satisfying application-specific integrity con-
straints. The system can play any history into a materialized
state and expose it to the application, so users can view any
of the forking histories and not just the “primary” one. Fur-
thermore, users can choose to manually resolve conflicts by
patching up the tree and moving events across histories, but
they can also defer conflict resolution and continue working
on a separate state of the application.

TreeDB generalizes the event log structure of distributed
version control systems like Git. It expresses its conflicts
using conflict sets, a conflict model found in consistent dis-
tributed systems with optimistic and multi-version concur-
rency control [2, 9, 16]. The system maintains a key property
of eventual consistency: regardless of the order in which the
events are received at different nodes, all nodes will eventu-
ally agree on the placement of events in the tree. We discuss
this property in more detail in Section 4.3.
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TreeDB’s events are sufficiently general that they can be
used to implement other approaches to conflict detection
and resolution—for example, commutative operations can be
used to lower the frequency of conflicts, even to the point that
the system always converges to a single history. In Section 5,
we show how simple CRDTs can be simulated in TreeDB.
TreeDB can also be seen as an adaptation of Git’s commit
graph to non-textual structured data; we also discuss this
relationship in Section 5.

It remains to be seen if forking histories can be made
ergonomic enough for end-users to understand in the context
of a real application. We suspect that careful user interface
design can enable users to reason about forking histories, and
that TreeDB—or perhaps a similar system—provides critical
properties for local-first digital gardens.

2 Sync challenges in digital gardens

Consider an application like Apple Photos or Adobe Light-
room that helps a dedicated photographer manage and orga-
nize their photo library. This application has several charac-
teristics that distinguish it from other kinds of software.

Accretion over time: A photo library manages data that
grows over time. Several of the authors manage photos li-
braries that span over multiple decades, and the value of
decade-old photos is no less than that of photos taken last
week. In contrast, data from old projects is usually not of
critical importance in a project tracker: the current state of
the task list is really what matters.

Unbounded workflows: Photo managers also handle
workflows that are unbounded in scope. Once a user finishes
writing a paper, the feedback they received from editors
during the writing process becomes irrelevant, because the
writing process ends at some discrete moment. In contrast,
the scope of what a user might want to do with their photos
expands indefinitely with time: perhaps a user might edit
their photos into a yearly calendar and a once-a-decade photo
book to share with friends and family. A photo library is a
living digital artifact that the user works with intermittently
and in diverse ways.

Medium Data: The data in a photo manager is too volu-
minous to manage carelessly but still small enough to fit on
a modern mobile device. We might call this Medium Data,
in contrast to Big Data. With Medium Data, a user cannot
exhaustively check that the data is not corrupted or damaged,
since going through tens of thousands of records could take
weeks. In contrast, manually checking that a project tracker
is in a valid state could be done in a few minutes in almost
all cases.

Valuable data: Lastly, we note that photo libraries man-
age immensely valuable data. Much of the data is irreplace-
able and a user must trust that the application won’t acci-
dentally lose it. Furthermore, even the metadata of a photo
library might represent hundreds or thousands of hours of
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creative effort. A photo library manager carries a heavy bur-
den of responsibility to the user on matters of data integrity.
We believe that these four properties—accretion over time,

unbounded scope, medium size, and immense value—characterize

an important class of applications that we call digital gar-
dens.! A user interacts with their digital garden repeatedly
and intermittently over a long period of time, as one would
plant, weed, and trim a garden. We think that many serious
uses of library managers (for photos, music, or other arti-
facts) are central examples of digital gardens. Some people
also express serious creative effort as they organize their files
in a traditional files-and-folders filesystem browser, so we
think that some uses of a filesystem would similarly qualify.

2.1 Example scenario

In this section, we illustrate some of the challenges of sync-
ing data for a digital garden. Alice and Bob are using an
application that allows users to organize and edit a shared
photo collection. It uses a local-first architecture that allows
offline editing and syncs data when a network is available.
A photo has two visual attributes: a saturation and contrast
value. Additionally, users can create albums that contain ref-
erences to photos; a photo can exist in multiple albums at
once.

Photo { cont: int, sat: int }
Album { name: string, photos: Set<Photo> }

Alice and Bob are traveling home from a vacation. Before
heading home, they synchronized all of their photos between
their laptops. Now they can each spend their train ride home
editing photos offline. Alice creates an album containing
several dozen photos. She makes a bulk edit to all the photos
in her album, reducing the contrast on all the photos to 70%
to create a faded look. Meanwhile, Bob is performing his own
edits. He creates his own album of several dozen photos, and
then applies a bulk edit to all photos in the album, raising
the saturation to 130% to make the colors more vibrant.

Later, when Alice and Bob regain internet access, they
synchronize their changes. It turns out that Alice and Bob
chose some of the same photos to be included in both of their
albums, which means that some of their actions affected an
overlapping set of photos. How should these edits be merged?
We present three options, shown in Figure 1.

Independent style properties. One solution is to mini-
mize conflicts. We could model saturation and contrast for
a given photo as two independent Last-Writer-Wins Regis-
ters [13]. In this case, because Alice and Bob edited different
properties, their writes do not even touch the same register

!The term “digital gardens” has been used informally on the Web to refer
to a variety of applications. One history of the term [1] notes that some
people have used the term “digital garden” to refer to photo albums and
private folder collections that people organize over time, and we adopt that
meaning here. There have also been other usages that refer primarily to
public collections of notes resembling a blog.
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and are trivially mergeable. Using this data model, the appli-
cation can merge the two users’ changes without conflicts,
and the users can view and edit their photos after merging.

However, a week later, Alice is showing a slideshow of her
album to some friends and notices that some of the photos
look strange. The problem is that Alice and Bob’s edits to
saturation and contrast were both applied to those photos,
resulting in a visual result that neither user wanted. Alice
hadn’t noticed this problem earlier upon merging, since there
were too many photos to manually review.

This sync system satisfied a useful property: after syn-
chronizing, both users were able to continue editing, with-
out needing to do any manual conflict resolution. However,
the system failed to keep the data in a state that the users
find acceptable. Neither user wanted to modify saturation
or contrast in isolation; their judgement about the quality of
the result depended on the value of the other parameters.

Style as a single value. Another option could be to treat
the visual style of a photo as an atomic value. For example,
we could use an LWW-Register CRDT to hold a value con-
taining both the saturation and the contrast. This model does
not allow concurrent edits to contrast and saturation to be
merged together; instead, the system converges to contain
either Alice or Bob’s preferred overall style for a photo, ar-
bitrarily choosing one of their edits using a totally ordered
property like a physical timestamp.

We now avoid merging visual edits to the same photo,
but there is still a problem. Imagine that the photo app has
synchronized using this approach. A week after syncing
with Alice, Bob is looking through his album and notices
that some photos look very different from the others, ruining
the visual uniformity of his album. The reason is that some
of his edits have been overridden by Alice’s. This system did
a better job preserving intent at the level of the individual
photo, but it failed to preserve Bob’s higher-level intent: to
edit in bulk all of the photos in an album to look the same
way. Bulk edits are common in digital gardens, and so it is
often important to reason about intent over groups of records
rather than individual records in isolation.

Bulk edits. To solve the above problem, we can consider
further coarsening the granularity of our conflict detection.
We can model editing all photos in an album as a “bulk action”
that must atomically succeed or fail, to ensure a consistent
visual look throughout the album. For example, this idea
can be naturally implemented in a system like Bayou [14]
or IceCube [7], in which developers can describe domain
events that execute transactionally, with application-specific
logic for conflict detection and resolution. In this new model,
Alice and Bob’s visual edits are incompatible; the system
arbitrarily picks Alice’s write as the winner and discards the
entirety of Bob’s bulk edit action as a conflict.

This approach avoids the data integrity problems with the
earlier solutions, but it creates a subpar user experience for
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Independent Style Properties

Both Alice and Bob'’s visual edits are
applied to the photos contained in both
of their albums, creating strange visual
effects.

create photo5.cont

Style as Single Value

Only Alice’s edits are applied to the
photos in both of their albums,
making Bob’s album visually
inconsistent.

create photo5 =
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Coarse-grained transaction

Bob’s visual edits are discarded
entirely as a conflict, forcing him to
resolve the conflict before proceeding
with further edits.

create Edit all photos in album:

album: =70 album: { cont: 70, sat: 100 } album: { cont: 70, sat: 100 }
“Alice’s” “Alice’s” “Alice’s”
Events
---------- ——0—0—0 e Qe @ O— @@ @
before © ° © o
sync - O O—O—0—0- 0 O—O—0—0- e -
create hotoS.sat create N create |
album: photos.sa album: photo5 = album: - ;
P =130 “Boh'e” t: 100, sat: 130 e Edit all photos in album:
Bob's Bobs”  {con sat: 130} Bob's { cont: 100, sat: 130 }
create create photo5 = create Edit all photos in album:
album: photo5.cont album: { cont: 70, sat: 100 } album: {cont: 70, sat: 100}
Events “Alice’s” =70 “Alice’s” “Alice’s”
after o o—e—o0—0—0- - oo o0 - o—eo—0—@Q
sync create photo5.sat create photo5 = create
album: =130 album: { cont: 100, album: L .
“Bob’s” “Bob’s” sat: 130} “Bob’s” (7%, BobSeditis notin
*...* thelog
photo5 = { cont: 70, sat: 130} photo5 = { cont: 70, sat: 100}
Alice’s album / Bob'’s album Alice’s album / Bob's album Alice’s album Bob'’s album
Resulting
state

Figure 1. An overview of different conflict resolution options in the example scenario.

Bob. Bob had planned to continue his editing work after he
gets home. After synchronizing, he sees his careful editing
work disappear from the UI because his entire bulk edit was
discarded as a conflict. Of course, his edit actions may not be
permanently lost—in this case the photo app allows him to
recover them in a history view—but in order to do any work
that builds on his changes, Bob must first do the manual
conflict resolution work needed to bring his changes back
into the application state. This coarse-grained transaction ap-
proach has achieved a stronger level of data integrity, but lost
a valuable property from the earlier options: the ability for
users to smoothly continue their work after synchronizing
changes with another user.

In sum, all three solutions are flawed in different ways. On
the one hand, being overly permissive in merging changes
results in data integrity problems that are difficult to detect
and clean up. On the other hand, being overly conservative
blocks users with conflict resolution work and prevents them
from proceeding with their work.

3 The forking histories model

Based on the scenario above, we claim that an ideal synchro-
nization model for digital gardens would satisfy these three
properties:
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Availability. Data can be edited freely offline, e.g. on
mobile devices, while disconnected from other replicas.

Data integrity. The application carefully models user in-
tent and avoids merging together changes in ways that might
cause undetected problems.

Deferred conflict resolution. After exchanging edits, the
application allows users to continue working freely, without
first resolving all conflicts.

Achieving these properties with forking histories. These
properties are difficult to reconcile, but we propose a model
of forking histories that achieves all three properties. The
key insight is that all of the options presented in Section 2
share the assumption that the application should converge
to a single shared state as soon as the users synchronize
their changes. This assumption makes sense in some con-
texts like withdrawing from a bank balance or booking a
meeting room, where it is useful to converge on a single
state as quickly as possible. However, this assumption does
not necessarily apply in a photo editing app. Alice and Bob
would like to eventually converge, but they would rather
choose when to do so, rather than be forced to converge
immediately upon syncing. The idea is to “merge what you
can, fork what you can’t”
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Merge what you can: When user changes do not conflict,
they should be automatically merged into a single shared
state. The system should allow app developers to associate
metadata with write events in a way that maximally cap-
tures user intent and relevant integrity constraints, so that
automatic merges do not cause surprising results.

Fork what you can’t: When user changes do conflict with
one another in a way that the system cannot automatically
resolve, the application state forks into multiple co-existing
histories. The application UI displays the multiple histories
across all users and devices, so everyone is aware that the
fork has occurred. The system can still arbitrarily designate
one history as the default across all replicas, but this is merely
a lightweight tag.

Users can switch to other histories and see those other
states reflected in the application; they can even do further
work in the application, extending that non-default history.
Users can see diff views between histories and do manual
work to reconcile events between them, and can manually
designate any history as the new default view shown to all
users. The physical action of sharing events between replicas
has been decoupled from the logical action of merging those
events into a common history. Instead, we have indepen-
dent notions of event sharing: another user’s events can be
available without having been applied.

The forking histories model moves constraint checking
from the write path to the read path. In a traditional, cen-
tralized transaction processor, constraints are maintained on
write. This is impossible in a system with availability during
network partitions. CRDTs avoid the issue by weakening
integrity constraints, and Bayou/IceCube include conflict
resolution logic to maintain constraints during late-arriving
writes. In contrast, in a forking histories system, any write
is allowed, but might only be visible from histories where it
did not cause a conflict.

3.1 Forking histories in our example

How would a system based on the forking history model han-
dle the example scenario in Section 2.1? The system creates
both Alice and Bob’s albums in a single non-forked history,
since album creation events do not conflict. However, the
bulk edits of the photos contend on shared state, because
the application developer has defined all edits of photo ap-
pearance metadata as conflicting. Since it can’t merge them,
it forks starting from the last shared state and create two
histories: one with Alice’s edits, and the other with Bob’s,
illustrated in Figure 2. It arbitrarily chooses the history with
Alice’s edits applied as the default.

After syncing, Bob sees these histories in his UI and de-
cides that he does not want to deal with merging them quite
yet. He clicks a toggle in the application to switch back to
the one which contains only his edits, and not Alice’s. He
continues to make further edits, building on his prior work.
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create Edit all photos in album:
album: { cont: 70, sat: 100}
“Alice’s”

Events  .---- @----

before

syne o---0—@ -
create
aébim Edit all photos in album:
ob's { cont: 100, sat: 130 }

Edit all photos in album:
create { cont: 70, sat: 100 }
album:

Events wplices” A
after  .....
sync create N ).----.
album:
Bob's Edit all photos in album:
{ cont: 100, sat: 130}
Alice’s Bob's
album album
Forked
state
Alice’s Bob's
album album
State after  Alice’s Bob's
reconciliation  album album

Figure 2. After syncing, the application state is forked into
two histories, one where each user’s change was applied. The
history with Alice’s change is tagged as the default. After
the users manually reconcile, the albums no longer overlap.

Later on, Alice and Bob decide that they are ready to in-
corporate Bob’s changes back into the main history, and they
coordinate on a solution which Bob can execute on his his-
tory. First, he performs an undo on his bulk edit action. Next,
he selects the photos in his album which overlap with Alice’s
photos and replaces them with duplicated copies. Then, he
re-executes his bulk edit action on the album with its new
contents. After these adjustments, Bob’s history no longer
contains any events that conflict with the main history, so
he can safely merge it into the main history.

As we can see, Alice and Bob still eventually converged
to a single shared state. However, they were able to decide
when to merge histories, which enabled them to maintain
data consistency without being blocked from continuing
their work.
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3.2 Design considerations

The forking histories paradigm presents a tradeoff for users.
It imposes a cost by requiring users to reason about mul-
tiple states of the application simultaneously. In exchange,
users gain significant benefits: they can be confident in the
integrity of their data, while always being able to access and
edit their data offline. In a situation where data integrity
isn’t particularly important or where incorrect merges can
be easily corrected, the cost may outweigh the benefit. How-
ever, in the context of digital gardens we believe that the
tradeoff is clearly worthwhile; it is better to give users an
accurate view that acknowledges the challenges of maintain-
ing data consistency than to pretend that data can always
be automatically merged without issues.

Programmers may be familiar with the benefits of fork-
ing history from using distributed version control systems
(DVCSs) like Git and Mercurial, which are indeed instances
of the forking histories model for data that can be repre-
sented as trees of text files. In fact, our proposed TreeDB can
be seen as a generalization of Git’s commit graph using more
general mechanisms for detecting and automatically recon-
ciling conflicts, especially outside of the domain of plain text;
we elaborate on this relationship in Section 5.

However, DVCSs are also notoriously difficult to learn
[4, 5, 11], which raises another question: is it really possible
for typical end-users to use a system with forking histories?
While outside the scope of this paper, we think this presents
an opportunity for HCI and design work—there are many
possible interfaces for reasoning about diverging versions of
the same data. Some of these interfaces are already deployed
in industry: for example, Track Changes in Microsoft Word
and Suggested Edits in Google Docs are Uls for reasoning
about different versions of a text document, and the Figma
collaborative drawing tool has a user interface for reconciling
merge conflicts which shows live previews of conflicting UI
elements.

4 Our proposal: TreeDB

To show why we think it is possible to create a sync system
using forking histories on the kinds of structured data that
show up in digital gardens, we propose TreeDB as a concrete
example of such a system. We believe that TreeDB can be
implemented efficiently and that it has several interesting
properties, such as supporting many common CRDTs as a
complement to the forking history model.

4.1 Events, versions, and conflict sets

All writes to TreeDB are done within the context of an event.
Each event consists of a set of write operations to be per-
formed. All writes within an event are performed transac-
tionally: that is, they are performed at the same time and
all together or not at all. Writes within a single event are
coalesced to their final value.
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A version is a single, consistent view of the data in TreeDB.
For now, think of versions as abstract labels that identify the
data on some history at some point in time. There is a partial
order on versions: a version v; may precede a version v,
which we write as v; < v3. When v; < v, all of the writes
that were visible at v; are also visible at v5.

Each event has an associated sequence version. The se-
quence version of an event identifies the latest event that
was visible when it was created. As we will see in Section 4.3,
the sequence version acts as a logical clock for ensuring
causal ordering of events.

In addition to the set of writes, an event keeps track of
its conflict set. Our conflict set is based on a design that
is commonly used in consistent distributed systems, and
particularly the key-value store FoundationDB [3, 6, 16]. A
conflict set consists of a set of keys, each of which uniquely
identifies some data in TreeDB: for example, the keys might
be keys in the sense of a relational database (corresponding
to rows in a table), or something coarser- or finer-grained.
A conflict set consists of two parts:

Read conflict set. A set of pairs of keys and versions. In-
tuitively, a key in the read conflict set was “looked at” or
otherwise depended on during this event; the version iden-
tifies the most recent change to the key. Note that every
version must precede the sequence version of the event.
Write conflict set. A set of keys. A key in the write conflict
set is one that will create conflicts if it was read during
a simultaneous event. Generally, any key that should be
changed in the process of applying the event should appear
in the write conflict set.

Critically, the sequence version and conflict set completely
define the causal semantics of the event; that is, the allowable
positions for this event relative to others (past, present, and
future) in a serialized event log. For example, an event with
empty conflict sets can, by definition, never conflict with
any other concurrent event. An application developer can
adjust the semantics of an event by manipulating the read
version and conflict sets; in Section 5 we give some examples
of crafting conflict sets to simulate simple CRDTs.

A set of events is called an event set. The primary mecha-
nism for distributed synchronization in TreeDB is sharing
events between event sets on different nodes.

4.2 Conflicts and serialization

Creating an event is equivalent to a transaction commit; there
is more to be done before it can be considered a “write”.
An augmented event is a pair of an event and a write version,
which is also a version. As of the write version, all writes
from the event are applied: that is, if our event has a sequence
version s and a write version w > s then any read at a version
v > w will see the write from our event. Conversely, no
version v < w will see the writes from our event; a version
for which neither v < w nor v > w may or may not see
the event. The write versions are assigned by a component
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called the sequencer discussed in Section 4.3, which runs
independently (but deterministically) at every node.

With the notion of a write version, we can define a conflict.
Consider a set of augmented events E = {ej,ez,...,e,} ona
key k with respective read versions {v1,v2, ..., v, } and re-
spective write versions {wy, ws, . .., wy, }. We have a conflict
in this set at k if there exist any pairs of events e; # e; such
that v; < w; < w; and k is in both the read set of e; and the
write set of e;.

Put less precisely: a conflict exists when another event
wrote to a key that an event read before it wrote to it. If there
exists a way of assigning write versions to events so that no
conflicts exist, then the write versions define a partial order
on the set of events. Furthermore, any total order on those
events that respects this partial order of write versions is a
serializable history of those events.

4.3 Sequencing

Every node in TreeDB runs a program called a sequencer: it
is the sequencer’s job to arrange the event set (which has no
further structure) into a rooted event tree. Each path from
the root of the tree to an event defines a history; the tree
must be constructed so that it has two key properties.
Causal order. For every history in the tree, and any two
events e; # ez with respective sequence versions s; and s;
where e; appears before e, in the history, we must not have
sz < sq; that is, either s; < s; or s; and s, are incomparable.
History serializability. For every history, there are no con-
flicts among the events in the history.

Put simply, the event tree arranges the events so that they
respect causal order and have no conflicts.

Notice that the sequencer has considerable latitude in how
it decides to organize the events in the event tree. We do not
even require that each event appear only once in the event
tree, although obviously each event must appear only once
in each history. While the precise details of the sequencing
process are an implementation detail, these two properties
ensure that the causal semantics of the events are respected.
In practice, it will be useful to use this latitude to produce
semantics that are minimally surprising to the user (or at
least well-communicated) and efficient to compute.

We impose one key requirement on the sequencer: the
sequencer’s output must be a deterministic function of the
event set. If we think of a sequencer as an incremental compu-
tation running at every node, this means that the sequencer
must produce the same event tree regardless of the order
in which the events arrived at that node. This property is
critical to the eventual consistency of TreeDB. As long as all
events eventually arrive at all nodes, all nodes will eventu-
ally converge on the same event tree. In some sense, TreeDB
can be viewed as a sort of “meta-CRDT”, since it is a CRDT
on the tree of histories rather than the domain data. This
meta-CRDT property also ensures that meta-actions taken
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by users on the tree (e.g., merging changes across histories)
will also result in a converging tree across all nodes.

4.4 Materializing

Lastly, we close the loop by connecting the event tree to
the versioned read system. Each history is a path through
the tree from the root to an event e. Replaying those events
defines a view of the data as of e’s write version w.

Suppose that we try to read a key k from that view of the
data at a version v > w. The read conflict imposed by that
key is the pair (k, vg), where vy is the write version of the
most recent ancestor event e, that wrote to k. That is, we
conflict with any writes that might have changed the value
of k after this event reads it.

From the perspective of a developer writing an application
with TreeDB, there is a single consistent view of the data “at”
the sequence version of the event. Any writes in an event
that read at that version is played on top of data that is
identical to the data at that version.

The component that is responsible for presenting this con-
sistent view is called the materializer: its job is to consume a
history in the event tree and materialize a consistent view
of the keys. In practice, we expect that a materializer will
work incrementally, applying diffs based on events to quickly
materialize an appropriate version.

5 Simulating existing systems

Common CRDTs. Some apps do not need strong integrity
semantics, or might need them only very selectively. We
think TreeDB is a general enough framework that it can sub-
sume these other use cases. For example, common CRDTs
can be implemented in TreeDB’s event framework by care-
fully defining the conflict sets. If all write events to a key k
are “blind”—that is, have an empty read conflict set and a
write conflict set of {k}, then those writes will never con-
flict. The sequencer has the latitude to determine a “last
writer” deterministically from the event set, and this last
writer necessarily respects the sequence versions and there-
fore respects causal order within the history. Thus, the value
of k is a last-writer-wins (LWW) register [12].

We can similarly implement an OR-Set CRDT where adds
win over removes [12], albeit only by assuming particular
behavior in the sequencer. The event add(x) has an empty
read conflict set and a write conflict set of {x}, as in the LWW
register. The event remove(x) with sequence version s has
a read conflict set of {(x, s)} and a write conflict set of {x}.
Suppose that we have a concurrent addition and removal
of the same value x. Because the key x is in both the read
conflict set of remove(x) and the write conflict set of add(x),
we have a conflict in any history where the addition precedes
the removal. Therefore, the only event trees that respect both
causal order and non-conflicting histories are (1) a fork into
two histories, one for the add event and one for the remove
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event, and (2) a single history with the removal preceding
the addition.

If we assume that the sequencer avoids unnecessary forks,
then it chooses the second option, and TreeDB therefore sim-
ulates the behaviour of an OR-Set. We believe that TreeDB
can simulate other CRDTs as well, although we have not yet
determined the precise power of TreeDB’s event model.

We believe that building a CRDT on top of TreeDB’s event
system provides the application developer and possibly the
end-user a remarkable amount of flexibility in defining con-
flict semantics. For example, a particular data structure might
generally support conflict-free real-time collaboration using
a CRDT but also allow the user to enter a “strict mode” in
which normally non-conflicting operations conflict, in cases
where they are performing particularly delicate changes.

Distributed version control systems. As mentioned in
Section 3.2, distributed version control systems (DVCSs) are
prominent examples of the forking history model. In fact,
TreeDB can be seen as an implementation of a DVCS commit
graph with different logic for detecting and (when possible)
automatically resolving conflicts. Here, we use Git to lay out
this relationship concretely.

Git organizes changes in a commit graph, which encodes
the data and defines the forking and merging semantics.
Each change is represented as a commit, which consists of a
diff (i.e., a set of lines to add to and remove from each file)
and a reference to one or more previous commits, called the
parents. Users copy the entire commit graph to their machine
and can make new commits on top of any of those other
commits, usually by “checking out” a particular commit into
their working filesystem. When a user shares these commits
with other users, the commits are reconciled if they did not
appear to conflict.2 When the changes do conflict, there is
a logical fork in the history: Git retains both commits as
peers but identifies a “merge conflict” and prompts the user
to reconcile the conflicting edit.

Crucially, a merge conflict is an illusion from the perspec-
tive of the underlying commit graph. By the time a merge
conflict has been identified, the commits have already been
created without conflicting. Both commits are equally valid,
and the disagreement is over which one receives the label of
the branch.

TreeDB is nearly® a direct translation of this commit graph
to structured, rather than textual, data. TreeDB events are

2The precise definition of a conflict in Git is extremely complex and depends
on the semantics of Git’s diff and patch implementations. We do not discuss
them here.

30ne incidental difference between Git and TreeDB is that the Git commit
graph is a directed acyclic graph, while TreeDB’s event tree is a tree. In
Git, a commit can actually have multiple parents. However, TreeDB uses
its sequence versions only for causal order delivery, and so a “merge event”
would just have a sequence version that is one higher than the highest
sequence version of its parents. If we wanted finer-grained lineage tracking,
we could track this metadata out-of-band.
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analogous to Git commits, with structured rather than text-
based semantics. Instead of identifying conflicts using diffs
and resolving non-conflicting conflicts using patches, TreeDB
identifies conflicts using structured conflict sets and resolves
them using application-defined business logic. TreeDB and
Git are therefore both concrete instantiations of a meta-
algorithm for managing event graphs that is parameterized
by the conflict detection (“diff”) and event application seman-
tics. TreeDB is much better suited to highly structured data
where the text-based diff and patch semantics are unlikely
to maintain appropriate integrity constraints: for example,
it would be quite difficult to encode a relational database
into text so that foreign key constraints are preserved by
Git’s merge and patch. However, one should be able to model
text as a type of structured data; this could allow a reimple-
mentation of Git within TreeDB, albeit with diff and merge
algorithms that have stronger semantics [10].

Confusingly, the user interface for Git (primarily the com-
mand line utility) uses the word “branch” to refer to the
floating label, not an actual graph-theoretic branch in the
commit graph. This language is likely inspired by earlier
version control systems with a different conceptual model,
like CVS, where forks happen when a user explicitly creates
a branch to avoid conflicts and registers it in a centralized
system. We posit that the conceptual mismatch between
CVS-style explicit branches and the structure of the commit
graph explains some of the difficulties that users have in
using Git. In Git, a “branch” (such as main) is a floating label
that applies to a particular commit: in fact, any commit can
serve as a parent for any other commit.

One interesting question is how a user can simulate a
Git-style branch, for example to perform some experimental
work that they might decide to throw away. In TreeDB, a
Git-style branch can be created by a “branch creation event”
that performs no writes but has all keys in both its read and
write conflict sets: this effectively creates a “serialization
point” that bars any simultaneous events on that history.
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