
Time Complexity of Computation
and Construction in the Chemical Reaction
Network-Controlled Tile Assembly Model

Nicholas Schiefer and Erik Winfree(B)

California Institute of Technology, Pasadena, CA 91125, USA
winfree@caltech.edu

Abstract. In isolation, chemical reaction networks and tile-based self-
assembly are well-studied models of chemical computation. Previously,
we introduced the chemical reaction network-controlled tile assembly
model (CRN-TAM), in which a stochastic chemical reaction network
can act as a non-local control and signalling system for tile-based assem-
bly, and showed that the CRN-TAM can perform several tasks related
to the simulation of Turing machines and construction of algorithmic
shapes with lower space or program complexity than in either of its
parent models. Here, we introduce a kinetic variant of the CRN-TAM
and investigate the time complexity of computation and construction.
We analyze the time complexity of decision problems in the CRN-TAM,
and show that decidable languages can be decided as efficiently by CRN-
TAM programs as by Turing machines. We also give a lower bound for the
space-time complexity of CRN-TAM computation that rules out efficient
parallel stack machines. We provide efficient parallel implementations of
non-deterministic computations, showing among other things that CRN-
TAM programs can decide languages in NTIME(f(n)) ∩ coNTIME(f(n))
in O(f(n) + n + log c) time with 1 − exp(−c) probability, using vol-
ume exponential in n. Lastly, we provide basic mechanisms for parallel
computations that share information and illustrate the limits of parallel
computation in the CRN-TAM.

1 Introduction

Biological organisms create remarkably sophisticated structures through the
interplay of genetically-encoded chemical reactions and molecular self-assembly.
DNA nanotechnology is beginning to explore the analogous potential of
information-based chemistry by developing programmable circuitry using DNA
strand displacement cascades [7,20,21,25,35], programmable self-assembly using
DNA tile systems [3,12,22,29,31], as well as systems that combine both dynamic
circuitry and self-assembly processes [33,34]. Whereas there are well-developed
theoretical models for dynamic chemical circuits [5,18,26,27] and tile self-
assembly [9,23,28] within which questions about the algorithmic power and
efficiency of such systems can be posed and answered, the interplay of chem-
ical reaction and self-assembly processes has received relatively little theoretical
attention.
c© Springer International Publishing Switzerland 2016
Y. Rondelez and D. Woods (Eds.): DNA 2016, LNCS 9818, pp. 165–182, 2016.
DOI: 10.1007/978-3-319-43994-5 11

166 N. Schiefer and E. Winfree

It has been understood for decades that enzymes acting on information-
bearing polymers can in principle perform efficient Turing-universal computation
[4,6,13] and recently plausible molecular implementations using DNA nanotech-
nology have been proposed [14,19], but these studies do not exploit the full
power of two- or three-dimensional self-assembly, nor do they explicitly concern
themselves with how chemical reaction network computation can direct the con-
struction of complex structures. We recently introduced a theoretical model [24],
called the Chemical Reaction Network-Controlled Tile Assembly Model (CRN-
TAM) that integrates the formal chemical reaction network (CRN) model [26]
and the abstract tile assembly model (aTAM) [23]. We proved that in this model,
the interplay between chemical reactions and self-assembly enables more efficient
computation (in terms of space used) and more efficient construction (in terms
of program size and shape scale) than either of the previous models alone. How-
ever, some of our constructions—devised to facilitate the proofs—were obviously
inefficient in terms of time; they failed to exploit the inherent parallelism of
molecular systems. Here, our goal is to determine whether integrating chemical
reaction dynamics and tile self-assembly also provides as dramatic an advantage
in terms of speed, for both computation and construction.

Using our previous definition of the structure and semantics of the CRN-
TAM, we formulate a kinetic model based on the Gillespie dynamics of stochastic
chemical reaction networks. Through a natural notion of CRN-TAM composi-
tion, we introduce the notion of an efficient encoding of an input and a fixed
CRN-TAM decider that decides strings in a language, leading to the notion of
copy-tolerant CRN-TAM deciders that can be readily composed and operated in
parallel without interference. With reference to our previous stack machine con-
struction, we show that there are space-efficient CRN-TAM deciders that use as
much volume as a Turing machine would use space. We also give a lower bound
showing that there are no space-efficient and copy-tolerant CRN-TAM deciders.

Our main result and most significant technical contribution is Theorem5,
which shows that there are copy-tolerant tile-based CRN-TAM deciders, which
we demonstrate using a sentinel process like the one used by Adleman et al.
[1] for analyzing the time complexity of assembling squares in a variant of the
aTAM. To show how these copy-tolerant CRN-TAM deciders can be used for
efficient parallel computation, we give a randomized CRN-TAM program that
generates all 2k strings of length k efficiently and with exponentially small error.
We then combine these results to show that CRN-TAM programs can efficiently
simulate non-deterministic computations in parallel, allowing them to (proba-
bilistically) decide problems in NTIME(f(n))∩coNTIME(f(n)) in nearly O(f(n))
time. Lastly, we show how the copy-tolerant CRN-TAM decider can be extended
to allow limited state sharing between computations executing in parallel and
discuss some likely limitations of parallelism in the CRN-TAM.

2 Semantics and Kinetics of the CRN-TAM

We begin by briefly reviewing the fundamental definition of the CRN-TAM,
which was defined in detail by Schiefer and Winfree [24].

Time Complexity of Computation and Construction in the CRN-TAM 167

Definition 1. A tile is an oriented square with a bond on each of the north,
east, south, and west sides. Each of these bonds is a distinct tuple (�, s), with a
label � drawn from some alphabet and non-negative integer strength s. Formally,
a tile is a four-tuple (t) = (N,E, S,W) of bonds for the north, east, south, and
west sides, respectively. In this paper, tiles are denoted by symbols surrounded by
boxes.

As in the abstract tile assembly model, tiles can aggregate to form larger
structures. These structures are held together by the bonds on the edges of the
tiles; to join onto an assembly, every tile must be bound with at least a minimum
binding strength, or temperature:

Definition 2. An assembly is an aggregation of adjacent tiles; formally, an
assembly composed of tiles from a set T is a function A : Z

2 → (T ∪ {ε}) that
assigns to each side of the 2D lattice a tile from T . If A(x, y) = ε, the site is
empty or unoccupied. A function A is a valid assembly if and only if:

– The occupied sites of the assembly form a connected set.
– The origin (0, 0) is occupied by a tile A(0, 0) ∈ T ; this tile is called the seed

of the assembly.
– The total binding strength of the tile at each non-empty site is at least the

temperature τ .

Assemblies are denoted by symbols surrounded by double boxes. For example, t

is a tile, but A is an assembly. The (infinite) set of all valid assemblies using

tiles from T is denoted MT . When clear from context, X is an assembly con-

taining only the tile x as its seed.

In the CRN-TAM, the notion of a tile and assembly are essentially equivalent
to those in models derived from the abstract tile assembly model [2,17,23,28].
In models that include only tiles, a tile set T completely specifies the structural
form of a tile-based program.

Definition 3. A CRN-TAM program is a tuple (S, T,R, τ, I) consisting of:

– A finite set S of identified signal species. We also use a notational “empty”
species ε and let Sε = S ∪ {ε}.

– A finite set T of tuples
(

t , t∗
)

pairing tiles t and their removal signals t∗,
where t∗ ∈ Sε. The same tile may appear at most once in T , i.e. it cannot
have two different removal signals.

– A finite set R of reactions, each of which is one of the following types:
• CRN reactions A + B

k−→ C + D, for signals A,B,C,D ∈ Sε.
• Tile deletion reactions A + t

k−→ C + D, for signals A,C,D ∈ Sε.

168 N. Schiefer and E. Winfree

• Tile creation reactions A + B
k−→ t + C or A + B

k−→ t + t′ , for signals

A,B,C ∈ Sε and tiles t and t′ .

• Tile relabelling reactions A+ t
k−→ B+ t′ for signals A,B ∈ Sε and tiles t

and t′ .

• Tile activation reactions A+ x
k−→ X +x∗ where A ∈ Sε and

(
x , x∗

)
∈ T .

• Tile deactivation reactions X +x∗ k−→ A+ x where A ∈ Sε and
(

x , x∗
)

∈ T .
In all of these reactions, a reactant or product ε indicates that the reactant or
product does not exists; for example, a reaction A+ε

k−→ ε+D is just A
k−→ D.

The reaction rate constant k must be specified as a rational number.
– The temperature τ ∈ N, which is the minimum binding strength.
– The initial state I, a multiset of tiles and signals that are initially present.

Often, we will use I as a function I : (S ∪ T) → N indicating the number
of a particular element in the multiset. An initial state does not contain any
assemblies.

Structurally, the signal species in S are analogous to the species of a stochastic
chemical reaction network (sCRN) and the tiles in T are analogous to the tile
set that defines a program in the abstract tile assembly model (aTAM). Signal
species and unbound tiles float in a well-mixed vessel, interacting analogously to
the species in a stochastic chemical reaction network.

Occasionally, it will be useful to combine several CRN-TAM programs.

Definition 4. The combination of two CRN-TAM programs P = (S, T,R, τ, I)
and P ′ = (S′, T ′, R′, τ, I ′) is P ⊕ P ′ = (S ∪ S′, T ∪ T ′, R ∪ R′, τ, I ∪ I ′), so long
as tiles are consistent, i.e.,

(
t , x

)
∈ T and

(
t , y

)
∈ T ′ implies x = y. Note

that since I and I ′ are multisets, duplicates are repeated in the union.

As in the aTAM, tiles bind together to form assemblies provided that they
attach with a total binding strength that is at least the temperature τ . Along
with the reaction specified in R, there are implicit addition and removal reactions
in the CRN-TAM that are similar to the corresponding reactions in other tile
assembly models, but with a slight change in character; extended rationale is
given in our previous paper introducing the CRN-TAM [24].

Definition 5. Let (t , t∗) ∈ T , and let A and B be assemblies that differ

by exactly t in some location other than (0, 0). A tile addition reaction is a
reaction

A + t
1−→ B + t∗

Time Complexity of Computation and Construction in the CRN-TAM 169

Notice that since B is valid, t is attached with total strength at least τ . The

corresponding removal reaction

B + t∗ 1−→ A + t

may occur only when t is bound by exactly strength τ , and the removal signal
is not ε. Note that the seed tile is privileged and cannot be removed from the
assembly; it may be deactivated only after all other tiles have been removed.

The signals, free tiles, and assemblies in the reaction vessel completely specify
the state of a CRN-TAM program at any time:

Definition 6. A state L of a CRN-TAM program P is a multiset of signals,
tiles, and assemblies. As with the initial state I, we use the notation L(x) :
(S ∪ T ∪ MT) → Z

+ to refer to the current count of x in L.

Frequently, we will refer to the program state or current state, which is simply
the state that reflects the current contents of the reaction vessel.

Definition 7. A reaction is possible for a state L if its rate constant is nonzero
and for every one of its reactants α, L(α) > 0. The possible reactions Pos(L)
of a state L include all of the possible reactions in R and all of the possible tile
addition and removal reactions. Note that Pos(L) is always finite.

The possible reactions induce a graph that describes the possible transitions
between different states.

Definition 8. The reaction graph G(P) of a CRN-TAM program
P = (S, T,R, τ, I) is a directed graph with a vertex for each of the (infinitely
numerous) states of P and a directed edge from L to all states in Pos(L) for all
states L. The reachable reaction graph is a subgraph of G(P) with only vertices
that are descendants of the initial state I. Where it is unambiguous or unimpor-
tant, we may refer to the reachable reaction graph as simply the reaction graph.

Note that reachable reaction graphs are by definition connected, but may not
be strongly connected. As reactions occur, the program state will change from
one state to the other in a manner that is governed by the reactions’ propensities:
in this paper, we are especially interested in CRN-TAM programs that eventually
reach a state with no possible reactions, where they will remain forever.

Definition 9. A state of a CRN-TAM program is a termination state if it has
no possible reactions. Equivalently, the termination vertex has no out edges in
the reaction graph. A CRN-TAM program P stops if it reaches a termination
state with probability one and the set of reachable states is finite.

As we will see in Definition 11, we cannot consider the temporal dynamics
of a CRN-TAM program without knowing the volume in which the program
operates. In this paper, we will always use a default volume, dependent on the
program, that ensures that any execution path will at all times have a finite
density, in the following sense:

170 N. Schiefer and E. Winfree

Definition 10. An atomic chemical species is a signal or a tile, whether free
or bound to an assembly. The mass of a state is the total number of atomic
chemical species present in all signals, tiles, and assemblies. The volume required
by a CRN-TAM program P is the maximum mass present for any state in the
reachable state graph of P .

By this definition, if the reachable reaction graph is infinite, then it must
have a state whose mass exceeds any given bound, and thus violates the finite
density constraint for some possible execution path. Our choice of volume cannot
handle such systems, and in this paper we restrict our attention only to CRN-
TAM programs with finite reachable reaction graphs. In the CRN-TAM, as in
stochastic chemical reaction networks [26], the volume is fixed at the beginning
and does not change over time.

Thus far, we have specified only the possible reactions associated with a
state and not the dynamics of the system. The program state evolves according
to stochastic Gillespie dynamics, where reactions occur at a rate proportional to
their current propensity [10,11].

Definition 11. Let P = (S, T,R, τ, I) be a CRN-TAM program in state L that
uses volume V . The propensity of a reaction R with rate constant k is given by:

– ρ(R) = kL(R1) if R is a unimolecular reaction with reactant R1.
– ρ(R) = kL(R1)L(R2)/V if R is a bimolecular reaction with two distinct reac-

tants R1 and R2.
– ρ(R) = kL(R1)(L(R1) − 1)/V if R is a bimolecular reaction with identical

reactants.

Note that a reaction is possible if and only if its propensity is nonzero. With
reference to Definition 11, we can finally define the kinetics of a CRN-TAM
program.

Definition 12. Let L(t) be a random variable-value for the current state of a
CRN-TAM program P at a time t ∈ [0,∞). The state L(t) evolves over time
as a continuous time Markov chain on the space of possible CRN-TAM states
with (deterministic) initial state L(0). For two distinct program states A and B,
the transition rate between them is given by the propensity of the reaction in P
that converts state A into state B, 0 if there is no such reaction, or the sum of
propensities if there is more than one (e.g. X

1−→ Y and C + X
1−→ C + Y).

For each of stochastic CRNs and the abstract tile assembly model, there is a
natural notion of the “size” of a molecular program; in sCRNs, this is the number
of reactions, while in the aTAM it is the number of tiles. We can similarly define
a measure of program complexity for the CRN-TAM.

Definition 13. The complexity of an initial state I : (S ∪ T) → N is

|I| =
∑

z∈(S∪T)

log2(I(z) + 1)

Time Complexity of Computation and Construction in the CRN-TAM 171

This definition is natural since it is the number of bits needed to specify a
general initial state I, up to small constant multiplicative and additive factors.
We similarly define the size of a set of reactions such that if all reactions have
unit rate constants, it is just the count of reactions, but otherwise it scales as
the information needed to specify the rates:

Definition 14. The complexity of a set of reactions R, where r ∈ R is written
as Ar + Br

kr−→ Cr + Dr and kr = nr

dr
as an irreducible fraction, is

|R| =
∑
r∈R

log2(nr × dr + 1)

The complexity of a CRN-TAM program is the sum of the complexities of
its components.

Definition 15. Let P = (S, T,R, τ, I) be a CRN-TAM program. The complex-
ity of P with respect to temperature τ is

Kτ
CT(P) = |S| + |T | + |R| + |I|

= |S| + |T | +
∑
r∈R

log2(nr × dr + 1) +
∑

z∈(S∪T)

log2(I(z) + 1)

Each term is related to the number of bits required to specify the corre-
sponding part of the program, up to logarithmic factors. Like sCRNs but unlike
the aTAM, we allow nontrivial initial state as a convenience; our previous work
showed that for any CRN-TAM program P , there is a CRN-TAM program P ′

with no initial state and program complexity Kτ
CT(P ′) = Θ(Kτ

CT(P)) that sim-
ulates it [24, Theorem 4].

3 Efficient Computation

We are principally concerned with using CRN-TAM programs to perform effi-
cient computation. As in much of theoretical computer science, we deal primarily
with decision problems, and therefore formulate a model of computation that
solves them. As defined so far, CRN-TAM programs cannot “compute” in the
sense that a Turing machine or even a circuit can; a program is fixed and has no
notion of input. Furthermore, most of the efficient and natural encodings of fixed
strings in the CRN-TAM involve assemblies, while a CRN-TAM program does
not have any assemblies in its initial state. To resolve this, we begin by describing
a natural way of encoding fixed input strings as CRN-TAM programs, and then
demonstrate how those input strings can be combined with CRN-TAM deciders
to provide a model of computation.

Definition 16. Consider a CRN-TAM program P and a string x over an alpha-
bet Σ. Let TΣ : T → Σ be a partial function from the tiles of P to the alphabet,
assigning some of the tiles in T to represent symbols in the alphabet. We say
that P encodes x if it constructs a 1 × (|x| + 1) rectangular assembly A with the
following properties:

172 N. Schiefer and E. Winfree

– A begins with a designated “start tile” tstart .

– Let the kth tile after the start tile be tk . Then TΣ

(
tk

)
= xk, the kth symbol

in the string.

Of course, a string of length n can always be encoded by a CRN-TAM pro-
gram with Θ(n) complexity, by using a distinct tile type for each symbol in the
string. Previously, Adleman et al. [1] and Soloveichik and Winfree [28] showed
that strings of length n can be encoded1 in aTAM tile sets with O(n/ log n) dis-
tinct tile types at temperature τ = 2. We can show that CRN-TAM programs
with sublinear complexity can encode n-symbol strings. In [24] it was shown
that:

Theorem 1. For any string x over a constant-size alphabet Σ and tempera-
ture τ ≥ 1, there is a CRN-TAM program P = (S, T,R, τ, I) that encodes x and
has complexity Kτ

CT(P) = O(n/ log n).

Moreover, this bound is tight. We therefore have a natural definition of input
for computation with the CRN-TAM:

Definition 17. An input encoding of a string x (over an constant alphabet) is
a CRN-TAM that encodes x and has complexity Kτ

CT(P) = O(|x|/ log |x|) at any
temperature τ ≥ 1.

Our CRN-TAM computers should be independent of the input and should
solve an appropriate decision problem when combined with an input encoding.
For the rest of the paper, we will use a default encoding EΣ(x) for alphabet Σ
and input string x, which we will simply refer to as E(x) where the alphabet is
clear from context.

Definition 18. Consider a language L that is decidable by a Turing machine M .
Consider a fixed CRN-TAM program D with two identified signals Qaccept and
Qreject. We say that D is a CRN-TAM decider for L with respect to the default
input encoding E if, for every input x the combined program D ⊕ E(x):

– Produces Qaccept and then stops immediately if and only if M accepts x.
– Produces Qreject and then stops immediately if and only if M rejects x.

For convenience, we will say that D accepts x if the first case holds and rejects
x if the second case holds.

For any execution of a CRN-TAM decider acting on an input, there is a
time t∗ for which L(t) = L(t∗) for all t ≥ t∗. Using the dynamics described in
Definition 12, we can use this to define the amount of time that a computation
in the CRN-TAM takes.

1 By necessity, a different notion of “encoding” must be used in the aTAM, since
building even a 1×n rectangle requires Θ(n) tile types [2]. However, the notion used
in the aTAM is analogous to our notion of encoding.

Time Complexity of Computation and Construction in the CRN-TAM 173

Definition 19. Consider a CRN-TAM decider D for language L, and a
string x. The time that D+E(x) takes to decide x is the random variable T ∗ for
the minimum time t∗ so that L(t) = L(t∗) for all t ≥ t∗. We call this the stopping
time of the CRN-TAM program. As we are usually interested in asymptotically
characterizing the worst-case time that a decider takes to decide all inputs of a
given length, we define the random variable T (n) = maxx∈Σn T ∗(x).

The aTAM is an inherently scalable model of molecular computation, in the
sense that we may consider an arbitrary number of assemblies growing in par-
allel and executing independent computations. Because there is no mechanism
for inter-assembly interaction and the supply of tiles is fixed (and implicitly infi-
nite), each assembly is a universe unto itself; from the perspective of an aTAM
programmer, it does not matter if a reaction vessel has a single assembly or a
million. Like stochastic CRNs, however, the CRN-TAM has a shared global state.
As a result, a CRN-TAM program does not necessarily scale for parallel execu-
tion: combining just two functioning CRN-TAM programs may not produce a
functioning CRN-TAM program. Nonetheless, scalability is a desirable property
from a theoretical standpoint, since it might allow parallel computations, and
from a practical standpoint, where any molecular program is unlikely to have an
isolated reaction vessel. As a seemingly minimal base case, a CRN-TAM program
that can scale for parallel execution ought to still work correctly when multiple
copies of the same program act on the same input. We are therefore especially
interested in CRN-TAM deciders that are copy-tolerant, in the following formal
sense that is closely related to the similarly-named notions for CRNs [8,15]:

Definition 20. A CRN-TAM decider D for language L is copy-tolerant if for
any k ≥ 2, D′

k =
⊕k

i=1 D is also a CRN-TAM decider for L.

Intuitively, a copy-tolerant CRN-TAM decider is one that supports running
multiple instances of the decider in the same reaction vessel simultaneously and
still reports the answer accurately. As we will see, many convenient CRN-TAM
deciders are not copy-tolerant, and there appear to be substantive lower bounds
on the volume required by copy-tolerant CRN-TAM deciders.

4 Space-Efficient Deciders

Definition 21. A site (i, j) containing tile x is immediately dependent on

site (i′, j′) containing tile x′ if it shares a bond with x′ and was added to the

assembly after x′ . The site (i, j) is dependent on (i′, j′) if it shares a bond with

a tile that is dependent or immediately dependent on x′ .

The recursive definition of dependency induces a directed, acyclic graph of
dependencies, where edges go from tiles to the tiles they are immediately depen-
dent on. In such a graph, a tile’s descendants are all the tiles it is dependent on,
and a tile’s ancestors are all those tiles that depend on it.

174 N. Schiefer and E. Winfree

Definition 22. Consider an assembly A. The dependency graph of A is a
directed graph with the occupied sites of A as vertices and a directed edge from
each site to the sites on which it is immediately dependent.

As an immediate corollary of Definition 22, the dependency graph is acyclic
and rooted at the seed of the assembly, as proved in [24]. Dependency is a critical
concept for attempting to disassemble an assembly; to disassemble, we are forced
to remove only leaves of the dependency DAG, performing the entire disassembly
in “dependency-reversed” order.

Theorem 2. A tile cannot be removed until all of its ancestors in the depen-
dency graph have been removed. That is, a tile cannot be removed until all tiles
at sites dependent on it have been removed.

Theorem 2 has both reassuring and limiting consequences. On one hand, it
ensures that tiles cannot be ripped out from the middle of the assembly when
their removal signals are present. On the other, it implies that we can never
create “temporary scaffolding” for our CRN-TAM constructions: a CRN-TAM
program may never build parts of an assembly that are dependent on scaffolded
parts that are meant to be removed later.

If a language L can be decided on a Turing machine using space s(n), we
might hope that there is a CRN-TAM decider for L that uses only Θ(s(n))
volume. Indeed, the existence of such deciders is an immediate corollary of the
stack machine construction from [24], itself a modification of the stack polymer
construction by Qian et al. [19].

Theorem 3. Given a language L decided by a Turing machine in space s(n),
there is a CRN-TAM decider for L that uses Θ(s(n)) volume.

The stack machine construction relied critically on storing the state of the
stack machine in the global CRN and is therefore not copy-tolerant. We might
hope to construct a CRN-TAM decider that is similarly space efficient, using
asymptotically as much volume as a Turing machine uses space on its tape, but
that also remains copy-tolerant. Unfortunately, this turns out to be impossible.

Theorem 4. Consider a language L decidable by a Turing machine that requires
s(n) space and t(n) time. Every copy-tolerant CRN-TAM decider for L uses
volume Ω(t(n)).

Proof. Omitted due to lack of space. 	

In general, there are many functions where t(n) ∈ ω(s(n)), i.e. that require

much more time to compute than space, and so there are languages for which
space efficient, copy-tolerant CRN-TAM deciders do not exist.

Time Complexity of Computation and Construction in the CRN-TAM 175

5 Time Complexity of Tile Computations

Having established that stack machine-based CRN-TAM deciders experience a
slowdown proportional to the volume and that copy-tolerant deciders require
Ω(t(n)) volume, we safely abandon attempts to build copy-tolerant stack
machine-type deciders. If we have temperature at least 2, where cooperative
binding is possible, we can also perform Turing-universal computation using
tiles alone [23,30,32]. This approach proves to be very fruitful, giving us a key
theorem:

Theorem 5. For every language L decidable in time t(n) and using space s(n)
on a Turing machine, there is a copy-tolerant CRN-TAM decider D for L with
expected time complexity Θ(t(n)) and volume complexity Θ(t(n)s(n)).

Proving Theorem5 is somewhat technical and involves some careful stochas-
tic analysis. The key problem is that CRN-TAM programs have only a finite
supply of each tile type present at any given moment. In the aTAM and many
of its derivatives, this is not a problem, since an infinite supply of tiles with
fixed ratios is generally assumed. The issue is further complicated by the finite
density constraint and the desire for fast computation; having all the necessary
tiles present from the beginning would raise the volume prohibitively and make
computation needlessly slow. To resolve this in the CRN-TAM, we use a simple
mechanism for regenerating consumed tiles; although the mechanism is intu-
itive, the asynchronicity of efficient computation as well as fluctuations in the
tile concentrations make it harder to analyze. Our proof that this mechanism
leads to efficient computation—as our intuitions tell us—involves analyzing a
sentinel process like the one introduced by Adleman et al. [1] in a variant of
the aTAM, where we artificially constrain the dynamics to create a stochastic
process that is easy to analyze but still stochastically dominates the actual CRN-
TAM dynamics. We analyze the dynamics of the sentinel process as a phase-type
distribution on CRN-TAM states. Lastly, we apply some careful combinatorics
and the Chernoff bound for exponentially distributed random variables to show
Theorem 5.

At a conceptual level, our efficient and copy-tolerant CRN-TAM decider will
use a constant-sized Turing-universal aTAM tile set to perform the computation
proper, by the well-known method of computation histories (Fig. 1). To ensure
that the (bimolecular) tile addition reactions proceed quickly, the decider will
use a tree-structured counter to efficiently generate an Θ(V) concentration of
each of those (constant in number) tiles. Lastly, the tile removal signal will be
consumed after its release and used to produce a new tile, which will replace the
consumed tile in the “pool” of available tiles. Each of these conceptual points
will be shown as a separate lemma, along with a number of technical lemmas
used for the analysis of the sentinel process.

To begin, we adapt a classic result from the aTAM [30], to show that there
are effective tile-only CRN-TAM deciders which make only minimal use of the
CRN.

176 N. Schiefer and E. Winfree

Fig. 1. An illustration of the assembly built by the tile-based CRN-TAM
decider TuringTiles, in this case implementing a Turing machine with two states (A
and B) operating on the binary alphabet Σ = {0, 1} and the rule that the read head
goes left whenever it sees a 0 and goes right whenever it sees a 1, flipping each bit as
it goes. The input string (01101100) is shown at the bottom.

Lemma 1. For any decidable language, there is a CRN-TAM program

TuringTiles = ({Qaccept, Qreject}, T, 2, ∅)

where Qaccept is the removal signal for a tile taccept that indicates acceptance and
Qreject is the removal signal for a tile treject that indicates rejection, consisting of
only tiles and the necessary signals, that is a CRN-TAM decider when combined
with an initial state containing a large enough supply of tiles.

Proof. Omitted due to lack of space. 	

In the CRN-TAM, it is critically important to have a high concentration

of tiles for addition since tile addition reactions are bimolecular. By definition,
assemblies have unit concentration, so we must aim to have Θ(V) tiles of a given
type in the reaction vessel of volume V in order to have constant expected time
for tile addition. For the case considered by Theorem5, however, at the beginning
neither the input encoding nor the CRN-TAM decider contains enough tiles;
thankfully, they can be generated efficiently.

Lemma 2. Given a species (signal or tile) A, there is a CRN-TAM program
TreeCountern(A) that stops with 2n copies of A in O(n) expected time, with
program complexity K1

CT(TreeCountern(A)) ∈ O(n).

Proof (sketch). For every 0 ≤ i ≤ n, introduce the signal Si and the reac-
tion Si → Si+1 + Si+1 unless i = n, with S0 as the sole species present in the
initial state. Notice that the total number of Si produced is precisely twice the
number of Si−1 that were produced, so by induction a total of 2n instances

Time Complexity of Computation and Construction in the CRN-TAM 177

of Sn are produced by this program. By adding the reaction Sn → A, we are
guaranteed to eventually stop with precisely 2n copies of A.

Through methods similar to those that will be used in the proof of Theorem5,
we can show that TreeCountern(A) stops in O(n) expected time. The key insight
is that every reaction in the tree counter is unimolecular and so can always
proceed at rate Ω(1). 	

Lastly, there is a simple mechanism for regenerating tiles, which we name for
convenience.

Definition 23. For a tile (t , t∗) in a CRN-TAM program, we define the pro-

gram ReplaceTileτ (t , t∗) = (S, T,R, τ, I) =
(
{t∗}, {

(
t , t∗

)
}, {t∗ → t }, τ, ∅

)
.

Combining Lemmas 1 and 2, we can efficiently generate a Θ(V) concentration
for all of the tiles in the (constant-sized) tile set for computation in only Θ(log V)
time; so long as the concentration remains that high, tile addition reactions will
happen in constant expected time and each tile addition will release a removal
signal t∗ that will be converted back into an active tile in constant expected
time. We now have the preliminaries necessary to state our construction of the
CRN-TAM decider in Theorem 5:

Proof (construction for Theorem 5). Consider a CRN-TAM program D =
(S, T,R, 2, I) consisting of the combination of TuringTiles and, for all tiles
(t , t∗) ∈ T , both TreeCounter�log V �(t) and ReplaceTile2(t , t∗). Since the tree
counter will produce Θ(V) tiles of each tile type right from the beginning, the
combined program is a CRN-TAM decider by Lemma 1. Lastly, notice that D is
copy-tolerant, since the entirety of the computation happens on a single assem-
bly. 	

The analysis of the expected time for D to decide L, including several tech-
nical lemmas, will appear in the full paper.

6 Combinatorial Assembly Production and
Nondeterministic Parallelism

The copy-tolerant CRN-TAM decider in Theorem 5 allows us to perform several
threads of computation in parallel, given sufficient volume. In general, it is simple
to make a copy of the input for each thread efficiently, using a tree-style copier
like the one used in Lemma 2. However, identical inputs are not useful; any
deterministic tile set such as the tile-based CRN-TAM decider would produce
precisely the same computation in all of the parallel threads. To remedy this, we
might hope to generate identifiers for each of the k threads as they are produced
during the input copying process. To this end, we could perform a combinatorial
assembly task, like generating all 2k binary strings of length k in a serial fashion
as was done in [24], but this would take time exponential in k. If we are willing to
allow some small chance of error, a very simple CRN-TAM program can assemble
these strings in Θ(k) time.

178 N. Schiefer and E. Winfree

Theorem 6. For any positive integer c, there is a CRN-TAM program
CombinGenerate(n) with complexity K1

CT(CombinGenerate(n)) ∈ Θ(cn) that
stops having constructed all 2n assemblies, each of size 1 × (n + 1), encoding
all binary strings of length n, in time Θ(log(cn2n)) with probability 1 − e−c.

Proof. Omitted due to lack of space. 	

We would of course prefer to be able to do combinatorial string assembly

deterministically and efficiently. Intuitively, this seems extremely difficult, for
the following reason. Suppose that we have assembled all but one of the strings;
if we are operating with some kind of parallelism, how can we know which
string has not yet assembled without some kind of exponential communication
problem? While we have not been able to prove anything beyond a few special
cases, we suspect efficient, deterministic combinatorial assembly is not possible.

Conjecture 1. There is no CRN-TAM program that constructs all 2n binary
strings of length n and runs in O(poly(n)) time.

As mentioned earlier, this combinatorial assembly can be used for generating
various seeds for parallel computations, so that different parallel threads can
operate differently. A simple application of this concept is implementing par-
allel non-determinism, where each seed acts as a string of binary guesses for a
nondeterministic Turing machine.

Theorem 7. For any language L ∈ NTIME(f(n))∩coNTIME(f(n)) and positive
integer c, there is a CRN-TAM decider for L that decides it in Θ(f(n)+n+log c)
expected time, with probability at least 1 − e−c.

Proof (sketch). First, observe that an input encoding can be converted into one
that generates 2f copies of the input by replacing each production of every tile t

with an instance of TreeCounterf (t) instead. Per our analysis of the tree counter,
this takes only O(f) time, so we can generate cn2n copies of the input in only
O(n + log c) time. Observe that a nondeterministic Turing machine running in
f(n) time can use at most f(n) bits of nondeterminism, so we need only gener-
ate all 2f(n) such strings. Consider a modification of CombinGenerate(f(n)) from
above where the f(n)th bit has a glue that matches the seed of an input assem-
bly, so that the input assemblies will grow at the end of each combinatorially
assembled seed. By modifying the tree counters that raise the initial tile concen-
tration, that we can modify the CRN-TAM decider from Theorem 5 to generate
cf(n)2f(n) times as many tiles, so that the concentration of each tile is still Θ(V).
Lastly, we modify the reject signal so that it is simply ε. So long as every string
of nondeterministic choices is generated by CombinGenerate(f(n)), the system
will produce the accept signal if and only if the input x is in L. We can perform
a similar operation on the Turing machine that decides the complement of L,
except that we change its accept signal to the reject signal. Combining these two
programs, we obtain a CRN-TAM decider for L that runs in Θ(f(n)+n+log c)
expected time, and succeeds whenever CombinGenerate(f(n)) produces all 2f(n)

strings of length f(n). 	

Time Complexity of Computation and Construction in the CRN-TAM 179

More concretely, we find that there are languages that are decidable in poly-
nomial time by CRN-TAM programs that are not decidable in polynomial time
by Turing machines under standard complexity theoretic assumptions. Notice
however that exponential volume might still be required; while we might evalu-
ate all nondeterministic branches in parallel, each still needs space to operate.

Corollary 1. Any language in NP ∩ coNP has a CRN-TAM decider that runs
in Θ(cpoly(n)) and succeeds with probability at least 1 − e−c.

On its own, Theorem7 demonstrates the computational power of the CRN-
TAM. A careful reader will note that from the perspective of an actual laboratory
experiment, the construction does not offer much beyond the capabilities of
tile-only systems based on the aTAM. Although the theoretical formulation of
the aTAM does not permit multiple assemblies, all experimental realizations
thus far have many, many assemblies forming in the same reaction vessel [3,22].
Furthermore, the same tile set used for the combinatorial seed production step
works just as well in the aTAM. From this point of view, the advantages offered
by the CRN-TAM are nice, but not fundamentally different. Unlike the aTAM
tile set, the CRN-TAM program can detect when an answer has been computed
and exponentially amplify a signal indicating that. As we will see, the biggest
advantage of the CRN-TAM is that is allows interaction between the assemblies
while it is computing, allowing more powerful forms of parallel computation.

7 Towards Parallel Computation with Shared State and
Open Questions

Even within the framework we have already described, a form of elementary
shared state can be implemented with only a slight modification. Consider
adding a special state tile with a distinguished removal signal φ and a reac-
tion φ → φ that converts it into a tile that can bind to another state tile. If
one assembly moves into the appropriate state, it can release φ and, by hav-
ing φ attach onto another assembly, share some constant number of bits of
information with another assembly. Furthermore, this signal can be amplified
very quickly using a tree counter, allowing it to “turn the test tube red” and
inform, with arbitrarily high probability, every other assembly that some assem-
bly reached state φ. Rudimentary branch-and-bound, an algorithmic technique
that has proved immensely useful for gaining dramatic speedups in optimization
problems with only exponential time algorithms, can be implemented with this
kind of rudimentary mechanism. In effect, we can use the CRN-TAM to simulate
the types of parallel steps introduced by Lipton [16] for classical DNA computing
that consisted of a series of laboratory operations on test tubes of DNA data,
thus replacing a non-autonomous molecular computation by an autonomous one.

The parallel computational power of the CRN-TAM is far from limitless,
however. Although we have been unable to show any concrete lower bounds, it
seems very difficult to implement many general forms of parallel computation—
such as languages decided by uniform circuits in time proportional to their depth,

180 N. Schiefer and E. Winfree

for example—because the well-mixed CRN is a difficult medium for passing
information. In particular, sending more than constant-sized messages between
different assemblies seems very difficult, since we must rely on chance to have
the message arrive at its destination, and every other recipient must somehow
recognize that the message is intended for another assembly.

Our work here has established a convenient kinetic model for the CRN-TAM
and analyzed the time complexity of basic computational primitives, but many
important questions remain open. Although we have shown the lower bound in
Theorem 4, there is a gap between our lower bound (that copy-tolerant CRN-
TAM deciders require Ω(t(n)) volume) and our best construction, which requires
O(t(n)s(n)) space. The question of whether there exist copy-tolerant CRN-TAM
deciders that require o(t(n)s(n)) volume remains open. Most questions related
to efficient parallel computation in the CRN-TAM also remain open, and we
have only considered the most basic ways of implementing it.

Acknowledgements. We acknowledge financial support from National Science Foun-
dation grant CCF-1317694 and the Soli Deo Gloria Summer Undergraduate Research
Fellowship at the California Institute of Technology. We also thank Dave Doty and
Damien Woods for their insights.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size
for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, STOC 2001, pp. 740–748 (2001)

2. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., de Espanes, P.M.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J.
Comput. 34, 1493–1515 (2005)

3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106,
6054–6059 (2009)

4. Bennett, C.H.: The thermodynamics of computation - a review. Int. J. Theoret.
Phys. 21, 905–940 (1982)

5. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.
23, 247–271 (2013)

6. Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Hori-
moto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS,
vol. 5147, pp. 65–80. Springer, Heidelberg (2008)

7. Chen, Y.J., Dalchau, N., Srinivas, N., Cardelli, L., Soloveichik, D., Seelig, G.:
Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–
762 (2013)

8. Condon, A., Kirkpatrick, B., Maňuch, J.: Reachability bounds for chemical reaction
networks and strand displacement systems. Nat. Comput. 13, 499–516 (2014)

9. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78–88 (2012)
10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81, 2340–2361 (1977)
11. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.

58, 35–55 (2007)

Time Complexity of Computation and Construction in the CRN-TAM 181

12. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-
assembled from DNA bricks. Science 338, 1177–1183 (2012)

13. Kurtz, S., Mahaney, S., Royer, J., Simon, J.: Biological computing. In: Complexity
Theory Retrospective II, pp. 179–195 (1997)

14. Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful
strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS,
vol. 6937, pp. 130–144. Springer, Heidelberg (2011)

15. Lakin, M.R., Stefanovic, D., Phillips, A.: Modular verification of chemical reaction
network encodings via serializability analysis. Theoret. Comput. Sci. 632, 21–42
(2016)

16. Lipton, R.J.: DNA computations can have global memory. In: International Confer-
ence on Computer Design: VLSI in Computers and Processor, pp. 344–347 (1996)

17. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent
results. Nat. Comput. 13, 195–224 (2013)

18. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits.
J. R. Soc. Interface 6, S419–S436 (2009)

19. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

20. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011)

21. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475, 368–372 (2011)

22. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004)

23. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, STOC 2000, pp. 459–468 (2000)

24. Schiefer, N., Winfree, E.: Universal computation and optimal construction in the
chemical reaction network-controlled tile assembly model. In: Phillips, A., Yin, P.
(eds.) DNA 2015. LNCS, vol. 9211, pp. 34–54. Springer, Heidelberg (2015)

25. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314, 1585–1588 (2006)

26. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)

27. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107, 5393–5398 (2010)

28. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36, 1544–1569 (2007)

29. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded
DNA tiles. Nature 485, 623–626 (2012)

30. Winfree, E.: On the computational power of DNA annealing and ligation. In: DNA
Computers. DIMACS Series in Discrete Mathematics and Computer Science, vol.
27, pp. 199–221. American Mathematical Society (1996)

31. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

32. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of
DNA: some theory and experiments. In: DNA Based Computers II. DIMACS Series
in Discrete Mathematics and Computer Science, vol. 44, pp. 191–213. American
Mathematical Society (1999)

182 N. Schiefer and E. Winfree

33. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular
self-assembly pathways. Nature 451, 318–322 (2008)

34. Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-
displacement circuitry with DNA tile self-assembly. Nat. Commun. 4, Article no.
1965 (2013)

35. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

	430939.pdf

