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Abstract. Tile-based self-assembly and chemical reaction networks
provide two well-studied models of scalable DNA-based computation.
Although tile self-assembly provides a powerful framework for describ-
ing Turing-universal self-assembling systems, assembly logic in tile self-
assembly is localized, so that only the nearby environment can affect
the process of self-assembly. We introduce a new model of tile-based
self-assembly in which a well-mixed chemical reaction network interacts
with self-assembling tiles to exert non-local control on the self-assembly
process. Through simulation of multi-stack machines, we demonstrate
that this new model is efficiently Turing-universal, even when restricted
to unbounded space in only one spatial dimension. Using a natural notion
of program complexity, we also show that this new model can produce
many complex shapes with programs of lower complexity. Most notably,
we show that arbitrary connected shapes can be produced by a pro-
gram with complexity bounded by the Kolmogorov complexity of the
shape, without the large scale factor that is required for the analogous
result in the abstract tile assembly model. These results suggest that
controlled self-assembly provides additional algorithmic power over tile-
only self-assembly, and that non-local control enhances our ability to
perform computation and algorithmically self-assemble structures from
small input programs.

1 Introduction

Biological systems are capable of remarkable self-organization directed by
information-carrying molecules and the complex biochemical networks that
interpret them. Even more remarkably, these systems are able to modify them-
selves and reconfigure their structure in response to changes in the surrounding
environment. In many areas of nanotechnology, we seek to emulate biological
systems by implementing self-assembly processes and dynamical systems at the
nanoscale.

Because of its relatively rigid, well-understood structure and the specificity of
Watson-Crick hybridization, DNA is a common substrate for work in nanotech-
nology. So far, work in the field has been loosely divided into two classes: struc-
tural DNA nanotechnology, which involves self-assembly of small DNA subunits
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into larger structures [18,25], and dynamic DNA nanotechnology, which seeks to
implement the behavior of dynamical systems through fluctuating quantities of
chemical species [34]. Both classes of DNA nanotechnology have been explored
extensively, now offering scalable methods for engineering complex nanoscale
structures from small components [3,14,21,23,31] and both analog and digi-
tal circuits for a variety of tasks [7,20,24,32,35]. Furthermore, both classes have
well-studied theoretical models, including a variety of self-assembly models based
on Wang tiling [11,16] and models of abstract chemical reaction networks for
chemical dynamics [6,8,27,28].

Despite the well-established results in these fields, little theoretical work has
considered interactions between structural and dynamic DNA nanotechnology,
suggesting that current theoretical models do not capture the full computa-
tional power of biomolecular systems. In biological systems, structure influ-
ences dynamics, and dynamics influences structure: the two are inextricably
linked together. Recently, work by Zhang et al. [33] proposed and experimen-
tally demonstrated a method for controlling the formation of DNA nanotubes
from double-crossover tiles using an upstream catalytic circuit implemented as a
DNA strand displacement system. However, there is currently little theoretical
understanding of the computational power of interacting dynamic and structural
biomolecular computing systems.

Some hints come from studies of the computational power of chemical sys-
tems involving linear polymers that can store information, which in theory can
perform efficient and error-free Turing-universal computation [4,5,19]. In partic-
ular, a plausible theoretical implementation of Turing-universal stack machines
using dynamic DNA nanotechnology showed that, at least for linear polymers,
DNA strand displacement systems can control the assembly and disassembly of
nanostructures in a very general and programmable way [19].

Here, we are interested in the ability of biomolecular systems to implement
computation and construction tasks in two dimensions (or more): for the former,
our goal is to perform a computation and report the answer, while in the lat-
ter, our goal is produce a particular nanostructure. Although tile self-assembly
permits Turing-universal computation [22] and Kolmogorov-optimal construc-
tion (up to scale) [29], the assembly logic in tile self-assembly is local; only the
immediate surroundings of a tile can influence its binding. In contrast, chemical
reaction networks are usually formulated with a “well-mixed” assumption under
which chemical species have no position within the reaction vessel. Although
this allows highly non-local information transfer, it precludes the possibility
of assembling large complexes. Consequently, we aim to leverage the non-local
information transfer offered by chemical reaction networks to exercise non-local
control over a two-dimensional (or, in principle, three-dimensional) tile assembly
process.

Thus, we introduce the chemical reaction network-controlled tile assembly
model (CRN-TAM), a formal model of molecular computing that uses chemical
reaction networks to provide non-local control over a tile self-assembly process.
In doing so, we formalize and generalize the type of biomolecular computing sys-
tems demonstrated experimentally by Zhang et al. [33] and explored theoretically
by Qian et al. [19], allowing us to reason mathematically about the capabilities
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of such systems in comparison to other models of molecular programming. We
show that the CRN-TAM subsumes models of stochastic chemical reaction net-
works and the abstract tile assembly model, and we establish a number of useful
“building blocks” for CRN-TAM programs.

Through the Turing-universality of the aTAM, we demonstrate that the
CRN-TAM is Turing-universal. Furthermore, we show that the CRN-TAM per-
mits the efficient construction of multi-stack machines, proving that the CRN-
TAM is also Turing-universal when restricted to unbounded space in only one
spatial dimension, unlike other models of tile-based self-assembly.

Using a natural notion of program complexity, we then turn to bounding
the complexity of a minimal CRN-TAM program that constructs a specified
algorithmic shape. By explicit construction, we show that there is a CRN-TAM
program that constructs every shape S at scale 2, with complexity bounded by
the Kolmogorov complexity of S. We show that this bound is tight by providing
a matching lower bound.

2 Defining the CRN-TAM

We begin by outlining a formal definition of the chemical reaction network-
controlled tile assembly model and providing a number of useful definitions.

Definition 1. A tile is an oriented square with a bond on each side; the bond
positions are called “north,” “south,” “east,” and “west.” Each bond has a dis-
tinct label and a strength, which is a non-negative integer. Formally, a bond
is a tuple (�, s) with label � and strength s ∈ N. For compactness, we often
express a bond (�, 1) evocatively as −� and a bond (�, 2) as =�. A tile is a four-
tuple t = (N,E, S,W ) of bonds for the north, east, south, and west sides,
respectively. Throughout this paper, tiles are denoted by symbols surrounded by
boxes, as above.

Definition 2. An assembly is a function A : Z
2 → (T ∪{ε}) that gives the type

of tile that occupies each site of the 2D lattice, where ε corresponds to an empty
site. If A(x, y) = ε, then the site is said to be unoccupied, since there is no tile
there. To be a valid assembly at temperature τ , A must satisfy these properties:

– The origin must be occupied by a tile A(0, 0) �= ε, which we call the seed of
the assembly.

– The occupied sites of the assembly must be connected.
– The total binding strength of each tile in the assembly is at least τ .

Throughout this paper, assemblies are denoted by symbols surrounded by dou-

ble boxes, e.g. A , or shown in a different color from tiles.

The definitions given in Definitions 1 and 2 are identical to those in previous
models of tile-based self-assembly derived from the abstract tile assembly model
[2,16,22,29]. Although it was implicit in previous “single-crystal” models such
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as the aTAM, here we explicitly distinguish between free tiles in solution and
growing assemblies, even those that contain only a single tile. This ensures for-
mally that free tiles only attach to “activated” assemblies, and not to each other,
which is convenient for avoiding issues of spontaneous nucleation and essential
for uniform treatment of the “removal signal” reactions described below. Further,
it provides a natural way for our model to allow for multiple crystals growing
within the same system.

In tile self-assembly, a molecular program is specified by a set T of tiles
and their associated bond strengths, an initial seed tile, and a temperature.
Analogously, we can define the structural form of a CRN-TAM program:

Definition 3. A program under the chemical reaction network-controlled tile
assembly model is a tuple (S, T,R, τ, I) where

– S is a finite set of identified signal species.
– T is a finite set of tuples

(
t , t∗

)
, where t is a tile and t∗ is either ε or some

signal species in S. The species t∗, if it exists, is called the removal signal for
tile t . No tile may appear in more than one tuple.

– R is a set of reactions, each of the form:
• A+B

k−→ C+D for signals A,B,C,D ∈ {ε}∪S. These are the “normal”
CRN reactions.

• A + T
k−→ C + D for signals A,C,D ∈ {ε} ∪ S and tile T . These are

tile deletion reactions.
• A + B

k−→ T + C or A + B
k−→ T + T ′ for signals A,B,C ∈ {ε} ∪ S

and tiles T and T ′ . These are tile creation reactions.

• A + T
k−→ B + T ′ for signals A,B ∈ {ε} ∪ S and tiles T and T ′ .

These are tile relabelling reactions.

• A + X
k−→ X + X∗, where A ∈ {ε} ∪ S and

(
X ,X∗

)
∈ T . This tile

activation reaction converts a free tile into the seed of a new assembly.

• X + X∗ k−→ A + X , where A ∈ {ε} ∪ S and
(

X ,X∗
)

∈ T . This tile

deactivation reaction converts a seed tile assembly into a free tile.
In all of these reactions, k is some rate constant. All of the constructions
in this paper are independent of rate constant, and so it is often omitted for
notational simplicity. In all cases where a rate constant is omitted, it can be
assumed to be 1. When any reactant or product is taken to be ε, the interpre-
tation is that the reactant or product does not exist; for example, a reaction
A + ε

k−→ ε + D is just A
k−→ D.

– τ ∈ N is the temperature, or minimum binding strength, typically 0, 1, or 2.
– I is an initial state, which is a multiset of tiles and signals that are initially

present. Often we will treat I as a function I : (S ∪ T ) → N where I(z) is the
count of species z in the multiset. No assemblies are initially present.

The elements of the set S of signal species are analogous to “normal” species
in a chemical reaction network and the set T of tiles is analogous to an aTAM tile
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Fig. 1. Example reactions for a CRN-TAM program. (a) Normal chemical reaction
network reactions and tile creation reactions. (b) Tile deletion and relabelling reactions.
(c) Tile activation, deactivation, addition, and removal reactions.

set (except in that tile concentrations are held constant in the aTAM, while in
the CRN-TAM discrete counts of tiles are tracked and may change as reactions
proceed). As in the aTAM, tiles may interact with assemblies to form larger
structures. However, in the CRN-TAM, each assembly step is accompanied by
the release of the tile’s associated removal species, and the reaction may be
reversible if the removal species is not ε. As a result, the behavior of a CRN-
TAM program will be dictated not only by the explicitly specified reactions R
as above, but also the tile addition and removal reactions:

Definition 4. A tile addition reaction has the form

α + t
1−→ β + t∗

wherever α and β are valid assemblies that differ by exactly one tile, t , that is

in β but not in α, where the tuple
(

t , t∗
)

∈ T . Since β is valid, t formed new
bonds with total strength at least τ . The corresponding removal reaction

β + t∗ 1−→ α + t

may occur only when t is bound by exactly strength τ .

We add the condition that a tile removal can only occur if the tile is bound
with strength exactly τ based on the principle that reversible reactions should
be roughly energetically balanced. As a side effect, it prevents a removal signal
from “ripping out” a tile from the middle of an assembly, and thus enforces that
only tiles at the boundary can be removed, which corresponds naturally with
tile removal in the kinetic tile assembly model.

Together, the contents of a reaction vessel—including free species and
assemblies—completely specify the state of a CRN-TAM program at any point:
A non-exhaustive sample of allowed reaction types is illustrated in Fig. 1.

Definition 5. A state L of a CRN-TAM program P is a multiset of signals,
tiles, and assemblies.
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Definition 6. The propensity of a reaction is the product of its rate constant
and the count of each of its reactants. The possible reactions of a state L of a
CRN-TAM program P = (S, T,R, τ, I) are all of the reactions in R with non-zero
propensity and all tile addition or removal reactions with non-zero propensity.

Over time, the program evolves from the initial state according to stochastic
Gillespie dynamics: that is, reactions occur at a rate proportional to their cur-
rent propensity [13]. The time evolution of the state of a CRN-TAM program
therefore forms a continuous-time Markov chain.

Definition 7. An assembly is terminal with respect to a state if there can be no
possible tile addition or removal reactions involving that assembly in the future.

While proving that an assembly is terminal can occasionally be done by
examination of just the assembly itself (showing that there is no location where
a tile may be added or removed, whether or not the tile or removal signal exists
in solution), showing that an assembly is terminal is generally undecidable.

Definition 8. Although the time evolution of the state of a CRN-TAM system
evolves stochastically, we may speak of deterministic CRN-TAM systems: sys-
tems for which there is at most one possible forward reaction, and at most one
possible reverse reaction, for every state. That is, the system state space is a
one-dimensional line.

Definition 9. A CRN-TAM program acting on an initial state L stops if the set
of reachable states is finite and reaches a state with no possible further reactions
with probability one.

Definition 10. A CRN-TAM program constructs a shape S if the program stops
with precisely one terminal assembly, and that assembly has shape S.

To give a natural notion of the “size” of a CRN-TAM program, we introduce
a notion of program complexity. This notion is analogous to the tile set size
under the aTAM, or the number of signals and reactions in a CRN.

Definition 11. The complexity of an initial state I : (S ∪ T ) → N is

|I| =
∑

z∈(S∪T )

log2(I(z) + 1)

This definition is natural since it is the number of bits needed to specify a
general initial state I, up to small constant multiplicative and additive factors.

Definition 12. Let P = (S, T,R, τ, I) be a CRN-TAM program (with unit reac-
tion rate constants). The complexity of P with respect to temperature τ is

Kτ
CT(P ) = |S| + |T | + |R| + |I| = |S| + |T | + |R| +

∑
z∈(S∪T )

log2(I(z) + 1)

Each of the terms is related, up to logarithmic factors, to the amount of
information needed to specify that component of a CRN-TAM program.
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3 Preliminary Results

The CRN-TAM is based on its eponymous models: abstract chemical reaction
networks and the abstract tile assembly model. As one would hope, it subsumes
both of these models. Subsuming models of stochastic CRNs is trivial:

Theorem 1. For any chemical reaction network C with species S and reac-
tions R (each of which has at most two reactants and two products), there is a
CRN-TAM program P = (S, ∅, R, 0, L) with dynamics identical to those of C
acting on L.

In contrast, the abstract tile assembly model requires an unbounded supply
of each tile type. Thankfully, it is straightforward to generate this supply with
a CRN-TAM program:

Theorem 2. Let T be a set of tiles for the abstract tile assembly model at tem-
perature τ , and suppose that T0 ∈ T is the designated seed tile. There is a
CRN-TAM program P that simulates the operation of T , in terms of reachable
assemblies, with complexity Kτ

CT(P ) ∈ Θ(|T |).
Proof. For each tile t ∈ T , we introduce the species Ct and the catalytic reac-

tion Ct → Ct + t . The removal signal of every tile is ε to enforce irreversibility

of tile addition. Our initial state consists of one of each Ct and the seed tile T0 .

The reaction T0 → T0 initiates the assembly process. ��

Next, we introduce a number of basic constructions that demonstrate the
flavor of CRN-TAM programs. The most important of these gives an efficient
way to run a broad-class of CRN-TAM programs a certain number of times.

Definition 13. A CRN-TAM program C is a handshake subroutine with respect
to a set of data molecules D if it satisfies:

Data-Inertness Property: In any state consisting only of molecules in D, no
reaction may occur.

Single-Entry Property: There is a species S that initiates the operation of
C. That is, no reaction will take place until a single molecule of species S
appears, and that molecule is consumed in the first reaction of C.

Single-Exit Property: There is a species F that signifies the completion of
C’s operation; we say that F terminates C. That is, F does not appear while
reactions of C are still possible, and F is produced by the last reaction of C
that can happen.

Intuitively, handshake subroutines are programs that we can choose to start
and can know have stopped. The definition does not require that C always stops,
but in typical usage there will be an argument that it does.
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Lemma 1. Let k be a nonnegative integer and P be a handshake subroutine that
is initiated by species PS and terminated by species PF. There exists a handshake
subroutine powerCounter(k,A,B, P ), initiated by A and terminated by B, with
Θ(k) additional chemical species and Θ(k) additional chemical reactions that
runs P exactly 2k − 1 times.

Proof. Let #(a) be the number of molecules of species a at a specified time.
We introduce the sequences of species X0,X1, . . . , Xk−1, S1, . . . , Sk, and

Y0, Y1, . . . , Yk−1, all of which do not appear in P (i.e. are “new” species). We
construct our counting circuit as a binary counter, where the pair (Xi, Yi) is
a dual-rail representation of the state of the ith bit of the counter; that is, if
#(Xi) = 1, then #(Yi) = 0, and if #(Xi) = 0, then #(Yi) = 1. By convention,
the value of #(Xi) is the value of the bit. The Si species will serve as (single-rail)
digit carry markers. For k-bit counting, we produce a new program as follows:

1. For each bit i, we introduce the reactions

Si + Yi → Xi + PS, Si + Xi → Yi + Si+1

2. Add the reaction PF → S0, to continue counting after C runs once.
3. Add the reaction A → PS to start the binary counting.
4. Add the reaction Sk → B to indicate that the counting is finished.

The initial state of our binary counting program is the full collection of species
Y0, . . . , Yk−1, one copy each, indicating that the counter starts at 0.

Notice that the structure of the reactions ensures that the following properties
hold by simple induction:

– At every time between the consumption of A and the creation of B, there
is exactly one of the Si carry species at all times, since every other reaction
consumes one of these and produces one of these.

– At any time, exactly one of {Xi, Yi} is present, since every reaction “flips a
bit” by consuming one {Xi, Yi} and producing the other.

– The reactions implement precisely the carry behavior of a binary counter with
k bits.

– At any time, there is only one reaction that can take place, by the above
properties, and so the program works deterministically.

– The initiation signal PS is released and consumed precisely once for every one
of the 2k − 1 values that the counter’s species’ can encode.

– Between successive releases of S0, the program P is run exactly once.

Observe that in our constructed k-bit counter, we introduce Θ(k) species and
Θ(k) reactions beyond those of the original program. Thus, the program—which
we call powerCounter(k,A,B, P )—has the desired properties. ��

We can easily modify this construction to run a handshake subroutine exactly
n ∈ N times, using Θ(log n) signals and reactions:
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Theorem 3. Let n be a positive integer and P be a handshake subroutine that
is initiated by species PS and terminated by species PF. There exists a handshake
subroutine binaryCounter(n,A,B, P ), initiated by A and terminated by B, with
Θ(log n) additional species and Θ(log n) additional bimolecular reactions that
runs P exactly n times.

Proof. By Lemma 1, we can construct a handshake subroutine that runs P a total
of 2�log n� −1 times using Θ(�log n	) = Θ(log n) additional species and reactions.
Extending this to run P one more time using the reactions S�log n� → PS and
PF → B instead of S�log n� → B, we have a handshake subroutine that runs P a
total of 2�log n� times.

We further modify our construction from Lemma1 by adding a differ-
ent initial state. Let b0b1 · · · b�log n� be the unique binary representation of
2�log n� − n ≥ 0, by definition. Then, our initial state (instead of a full sequence
of “off” bits Yi) will be, for all i, #(Xi) = bi and #(Yi) = 1 − bi.

In effect, our �log n	-bit counter starts with a value of 2�log n� − n, which we
identify as “zero”, and ends in the state 2�log n�, which is therefore identified as
2�log n� − 2�log n� + n = n. This construction adds only Θ(1) complexity beyond
that from Lemma 1 so our program still has Θ(log n) additional complexity. ��

It is intuitively useful to consider the initial state I of a CRN-TAM program
P . However, the following theorem shows that the addition of the initial state
does not provide extra algorithmic power over the model with no additional
state.

Theorem 4. Let P = (S, T,R, τ, I) be any CRN-TAM program that cannot
start until some species F is released. We define a special signal Q∗ and let
our initial state I ′ = {Q∗}. There exists a program P ′ = (S′, T ′, R′, τ, I ′) with
Kτ

CT(P ′) ∈ Θ(Kτ
CT(P )) that has the same graph of possible states after Θ(|I|)

initial states.

Proof. Let Z ⊆ (S ∪ T ) be the set of s ∈ (S ∪ T ) with I(s) > 0, and let
Z̃ = (z1, z2, . . . , z|Z|) be an arbitrary ordered sequence of Z.

For each zi, let Ci be the chemical reaction network Qi → zi+Hi, and note that
C is a handshake subroutine that simply creates one zi. We construct P ′ by aug-
menting P with signal Q|Z|+1, reactions Hi → Qi+1, Q∗ → Q1, and Q|Z|+1 → F ,
and for each zi, a new signal Qi and a CRN binaryCounter(I(zi), Qi,Hi, Ci) that
uses new species each time for its internal operation.

This construction is illustrated in Fig. 2. By Theorem 3, each binary counter
will produce precisely I(zi) of each species zi when Qi is present.

We can now show that when Qi+1 is released, we have the correct “initial
state” counts of all species zj , j ≤ i. In the base case, notice that the presence
of Q∗ caused the release of Q1, which will cause the release of I(z1) of species
z1. Now, suppose that when Qk+1 is released, we have the correct counts of all
species zj , j ≤ k. Then, notice that the release of Qk+1 initiates the release of
exactly I(zk+1) of zk+1, and also the release of Qk+2. By induction, when species
Q|Z|+1 is released, all of the species zi ∈ Z will have the correct initial counts.
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Fig. 2. Conceptual illustration of the construction for Theorem 4. Starting with the
singleton “starter species”, we use the binary-counting CRNs from Theorem 3 to pro-
duce the correct number of each initial species (as indicated above each stage). When
each binary counter finishes, it starts the binary counter for the next species.

Since Ci requires a constant number of species and reactions, by Theorem3,
each binary counter and the associated reactions contribute Θ(log I(zi)) com-
plexity. Thus, by construction, P ′ has complexity:

Kτ
CT(P ′) = |S| + |{Qi}k

i=1| + |T | + |R| + Θ(1) +
k∑

j=1

Θ(log I(zj))

= |S| + |T | + |R| +
k∑

j=1

Θ(log I(zj)) = Θ(Kτ
CT(P )) ��

So long as our CRN-TAM program is deterministic at its starting state,
the initial state does not enable asymptotic reduction in program complexity.
A careful reader will notice that the notion of program equivalence introduced
in Theorem 4 is a restriction of the notion of weak bisimulation, which rigorously
establishes a notion of equivalence for concurrent systems. In this paper, all of
our constructions use deterministic CRN-TAM programs, and so this theorem
will always apply.

This theorem also has a very simple corollary that immediately tells us that
the CRN-TAM is in some ways more powerful than the aTAM:

Corollary 1. A 1 × n rectangle can be constructed by a program P with only a
singleton initial state with Kτ

CT(P ) = O(log n).

Proof. Let P =
(

{S},
{(

x , ε
)}

,

{
S + x → x

}
, 1, I

)
where I

(
x

)
= n,

I(S) = 1, and x is simply a tile with the same strength-1 glue on two opposite
sides (say, east and west). Clearly, P assembles a 1 × n rectangle. By definition,
Kτ

CT(P ) = O(log n), and note that this program will not start building until a
seed tile is release. By Theorem 4, there exists a program P ′ that assembles the
1 × n rectangle using only a singleton initial state with Kτ

CT(P ′) = O(log n). ��
In contrast, the size of a tile set (the notion of program complexity for the

aTAM) that produces a 1 × n rectangle is Θ(n) [2]. Similar bounds have been
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established for other models of tile self-assembly, including the negative glues
model [17]. In this example, the lower complexity achieved by the CRN-TAM
comes from the explicit control over the number of tiles of a particular type
that are present in solution. One can imagine a formulation of the aTAM where
similar exact counts of tiles are tracked as they are consumed; in such a model, a
program with an initial state consisting of exactly n copies of tile x will construct
a 1×n rectangle with O(1) tile types. However, Theorem 4 shows that the CRN-
TAM can generate its initial state without changing the program complexity,
while the analogous result for the modified aTAM would not hold (if program
complexity is still taken to be just the number of tile types).

The CRN-TAM also permits the construction of exactly m copies of a shape
that can be constructed deterministically:

Theorem 5. Given a deterministic CRN-TAM program P at temperature τ that
constructs a shape S, there is a CRN-TAM program P ′ that constructs m copies
of S with complexity Kτ

CT(P ′) = O(Kτ
CT(P ) + log m).

Proof (sketch). Since P constructs S deterministically, at each time there is at
most one possible tile addition. Furthermore, the tile addition must be done
with a handshake (e.g. X → t + W , W + t∗ → Y ) because otherwise whether
the assembly step or the next reaction occurs first would be non-deterministic.
We construct P ′ by replacing the release and handshake of a single tile by P
with a binary counter that, m times, releases the tile and waits for it to attach
before continuing. That is, we invoke binaryCounter(m,X, Y, {S → t +W,W +
t∗ → F}). Note that the first release tile must be able to attach in a unique
location on the m identical assemblies, because otherwise P would not have
been deterministic. To ensure that each subsequent released tile attaches to a
distinct assembly, rather than two or more of them attaching to each other
on the same assembly, we label all of the tiles in P with the color red, and
introduce an identical set of tiles with color black. We adjust the bonds so that
red tiles may only bond to black tiles, and black tiles may only bond to red tiles.
At each step, depending on the color of the tile we are trying to bind to, we
release a tile of the appropriate color. This creates a checkerboard, and ensures
proper assembly. Since P is deterministic, we only need a constant number of
binary counters, one for each tile type. By Theorem3, this takes O(log m) extra
complexity. Similarly, each step of P that creates a new seed assembly must
instead create m seed assemblies. ��

In defining the model, we introduced the condition that a removal reaction
may only occur when the corresponding tile is bound to the rest of the assembly
with strength exactly the temperature τ . The next theorem shows that this
prevents assemblies from “falling apart” once they have been constructed, except
in an order that is approximately the reverse of the order of addition.

Definition 14. A site (i, j) containing tile x is dependent on site (i′, j′) con-

taining tile x′ if x was added to the assembly after x′ and either shares a

bond with x′ or shares a bond with a tile that is dependent on x′ .
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This recursive definition of dependency imposes an implicit directed, acyclic
graph of dependencies. To disassemble and assembly, we must recursively remove
tiles from the leaves of the dependency DAG:

Theorem 6. If Q is the set of all sites that are dependent on a site (a, b), then
for any site (i, j) ∈ Q, the tile at site (i, j) cannot be removed until the tiles at
all other sites in Q have been removed. That is, a tile at a site cannot be removed
until the tiles at all dependent sites have been removed.

One (limiting) consequence of Theorem 6 is the impossibility of creating
“temporary scaffolding”: a CRN-TAM program cannot build permanent parts
of an assembly that are dependent on parts that are to be removed later, or it
will be impossible to remove the scaffolding.

4 Turing-Universality

With these preliminaries, we consider the ability of CRN-TAM programs to
simulate the operation of a Turing machine—which allows it to perform arbitrary
computation—under various circumstances.

Theorem 7. The CRN-TAM is Turing-universal at temperature τ = 2.

Proof. Given an aTAM tile set T , we may construct a CRN-TAM program
P = (∅, T, ∅, 2, Iseed) that simulates it at temperature 2. Thus, the CRN-TAM
is Turing-universal by the Turing-universality of the aTAM [22]. ��
Since the CRN-TAM subsumes the aTAM, Theorem 7 is far from surprising.
However, the construction used to show the Turing-universality of the aTAM
relies critically on the ability for Wang tilings to represent computation histo-
ries: the state of the Turing machine tape at each step. Importantly, this requires
potentially unbounded space in both spatial dimensions. Through clever use of
DNA strand displacement polymers, Qian et al. [19] showed the Turing univer-
sality of polymer reaction networks by constructing multi-stack machines. Since
each stack is one-dimensional, the construction requires unbounded space in only
one spatial dimension to provide Turing universality. A related construction for
the CRN-TAM provides an analogous result:

Lemma 2. Consider a (deterministic or non-deterministic) stack machine
M = (Q,Σ, δ, n, q0), consisting of a finite set of states Q, a symbol alphabet
Σ, an integer n giving the number of stacks, an initial state q0 ∈ Q, and a set
of transition rules δ where each element of δ is one of:

1. α1 → α2 for states α1, α2 ∈ Q.
2. α1

popj=σ−−−−−→ α2, σ ∈ Σ for states α1, α2 ∈ Q, corresponding to popping a symbol
off of stack j.

3. α1

pushj(σ)−−−−−→ α2 for states α1, α2 ∈ Q and symbol σ ∈ Σ, corresponding to
pushing a symbol σ onto stack j.
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Fig. 3. Conceptual illustrations of the push and pop operations for a stack machine.
On the left, the push operation “state A goes to state B, pushing symbol N onto stack
1” is shown. During a push operation, a stack-specific symbol is released, along with
an intermediate species A′. The finite control waits for the stack- (but not symbol-)
specific removal signal 1∗ before continuing. On the right, the pop operation “from
state A, pop a symbol from stack 1. If it is an N , go to state B” is shown. The pop
operation is basically the reverse of the push operation. In both diagrams, D represents
a network of other reactions, not just a single signal.

There is a CRN-TAM program P = (S, T,R, 1, I) that simulates M with
K1

CT(P ) = O(|Q| + |Σ| + |δ|). Furthermore, it requires unbounded space in only
one geometric dimension, and runs in constant space in the other.

Proof. We show the result by construction, showing how to “compile” a stack
machine M into a CRN-TAM program P . Our construction, based on the one
used by [19] and illustrated in Fig. 3, is:

– For each state αi ∈ Q, we introduce the species Si and S′
i, including the initial

state q0 (represented by S0).
– For each stack k, we introduce:

• A “stack query species” Qk

• For each symbol σ ∈ Σ, a tile σk = (∅,−k, ∅,−k), each with the same
removal signal Qk

• A tile λk = (∅,−k, ∅, ∅) that represents the “bottom-of-stack”, with
removal signal ε.

– For each transition in δ:
1. Implement transitions of the form αi → αj with the reaction

Si → Sj

2. Implement transitions of the form αi
pop�=σ−−−−→ αj with the reactions

Si → Q� + S′
i, σ� + S′

i → Sj

3. Implement transitions of the form αi
push�(σ)−−−−−→ αj with the reactions

Si → σ� + S′
i, S′

i + Q� → Sj

– Include as initial state one of each λk and one of species S0. Include the

reactions λk → λk to produce the initial assemblies.
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The idea behind this construction is to represent the finite state with the
presence of one of the Si signals, and use tiles to construct a physical “stack”
assembly of tiles for each stack in the stack machine. By identifying each tile
with a stack’s identity, we are able to restrict the symbol to interactions with
the desired stack. To show correctness, we demonstrate that the transitions are
correct, and argue that the possible reactions at each point are precisely the
valid transitions from the current state in δ.

Clearly, reactions of type (1) are correct, since the reaction Si → Sj is a
direct implementation of the transition αi → αj .

Reactions that perform pushes and pops are somewhat more complicated. To
pop a symbol from stack �, we produce the stack query species Q� and the “state
storage species” S′

i that indicates that we are in the process of transitioning out
of state αi. Since Q� is the removal species of every one of the σ� ,∀σ ∈ Σ, this

will remove the tile at the only “exposed” site of stack �. Then, this tile σ� can
react with S′

i to produce the state transition to Sj .
Similarly, to push symbol σ onto stack �, we release σ� with the reaction

Si → σ� +S′
i, releasing S′

i to indicate that we are in the process of transitioning

out of state αi. When the tile σ� attaches to the assembly for stack �, it will
release its removal species Q�. The removal species will then react with S′

i, which
transitions to another state.

Lastly, note that at any point in time, exactly one of the Si or S′
i is present,

and every reaction both produces and consumes exactly one Si or S′
i. Thus, the

progress of the CRN is deterministic, except possibly where a single Si could
transition in several ways (if the original stack machine is non-deterministic).
We introduce a constant number of species and reaction to represent each state,
stack symbol, and transition rule, and so K1

CT(P ) = O(|Q| + |Σ| + |δ|). ��
Theorem 8. Let U be a Turing machine. There exists a CRN-TAM program
that simulates the operation of U , and requires unbounded space in only one
geometric dimension, while running in constant space in the other. That is, the
CRN-TAM is Turing-universal when running in one spatial dimension.

Proof. It is well known that multi-stack pushdown automata are equivalent to
Turing machines [26]. Observe that a multi-stack pushdown automaton can be
implemented using the same construction used in Lemma2. Thus, U may be
implemented by way of an equivalent multi-stack pushdown automaton. ��

There are two critical differences between Theorems 7 and 8. First, the aTAM
is Turing-universal only at temperature 2, since algorithmic self-assembly is
required for universality. In contrast, the CRN-TAM can simulate stack machines
at temperature 1, and is thus Turing-universal at all nonzero temperatures.
Although this is believed to be impossible for the temperature 1 aTAM, a 3D
generalization aTAM is Turing-universal at temperature 1; furthermore, the con-
struction requires only constant space in the third dimension [9].

Second, the CRN-TAM supports Turing-universal computation using
unbounded space in only one spatial dimension, while the aTAM requires
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unbounded space in both spatial dimensions for universality. Interestingly, neg-
ative glues also allow for a restricted version of this result, where assem-
blies can be split into one-dimensional assemblies but cannot be deconstructed
completely [12].

5 Optimal Encoding of Binary Strings

Having given efficient constructions for simulating Turing-universal computa-
tion, we now consider the related problem of efficiently encoding inputs for these
Turing machines as (binary) strings. Given our stack machine construction, we
aim to encode strings of length n as 1 × n tile assemblies, which can be used as
the input for a stack machine like in Lemma2.

Definition 15. A CRN-TAM program P encodes a binary string x if it con-
structs a 1 × |x| rectangular assembly of tiles representing the bits of x.

Of course, a binary string x of length n can be easily encoded by a CRN-
TAM program of Θ(n) unique tile types: one for each bit of x. However, just as
Adleman et al. [1] and Soloveichik and Winfree [29] encoded strings of length n
in smaller aTAM tile sets that self-assemble at temperature τ = 2 to unpack the
bits, in the CRN-TAM we can do substantially better at τ = 1 and using just
one dimension for self-assembly:

Theorem 9. For any binary string x of length n, there is a CRN-TAM
program P = (S, T,R, 1, I) that encodes x and has complexity K1

CT(P ) =
O(n/ log n).

Proof. Suppose that we represent x as a sequence of k binary words
(w1, w2, . . . , wk), each with size w = n/k. For convenience, define the functions
h(x) and t(x) to be the head and tail of a binary string x (i.e. the first bit, and
all the remaining bits, respectively).

Define the data tiles T0 = (∅,−, ∅,−) and T1 = (∅,−, ∅,−), encoding
the binary symbols zero and one, with removal signals 0∗ and 1∗, respectively.
Additionally, define the “bottom-of-stack” tile λ = (∅,−, ∅, ∅) that will create
the seed assembly through an activation reaction.

For every binary string a of length at most w, we introduce several signals:
Aa (the “construction signal”), A′

a (the “intermediate signal”), Wa (the “wait
signal”), and Ba (the “completion signal”). For any binary string a of length at
most w, define the following set Ra of reactions:

Ra = {Aa → A′
a + Th(w) , h(w)∗ + A′

a → Wa + At(w), Bt(w) + Wa → Bw}

By construction, the reactions in Ra push the first bit of a onto the stack, then
invoke the reaction gadget for the remaining bits of a. It waits to receive the
completion signal for the tail bits of a, and then issues its own completion signal.
Notice that Ra has constant size.
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To encode x, we can use k hard-coded tiles of distinct tile types that will
assemble together; each tile represents a w-bit word of x; equivalently, we could
use a hard-coded CRN producing unique signals for each word. We can then
include the tiles, signals, and reactions described above for every string of length
at most w, along with reactions that will repeatedly pop a word-tile representing
word a from the stack of word tiles, produce Aa, and wait to consume Ba before
popping the next word tile. These require only a constant number of reactions,
so the total program complexity is: K1

CT(P ) = Θ(k) + O(2w+1) since there are
2w+1 strings of length at most w.

Picking w = log(n/ log n), we get k = n/(log n− log log n) ∈ O(n/ log n), and
so Kτ

CT(P ) = O(n/ log n). ��

6 Kolmogorov-Optimal Assembly of Algorithmic Shapes

We now turn our attention to the problem of constructing a geometric shape S
using the CRN-TAM program of minimal complexity. Following [29], we can give
a formal definition of shape:

Definition 16. A shape S is a connected subset of the 2-dimensional lattice Z
2

under the equivalence relation S = S ′ if and only if S ′ is a translation of S.
A c-scaling of a shape S is the shape sc(S) that is obtained by replacing each
square of S with a c × c block of squares.

We follow the usual definition of the Kolmogorov complexity of a binary string
x with respect to a fixed universal Turing machine U as the minimal size of a
program for U that outputs x. We extend this notion to a shape S:

Definition 17. The Kolmogorov complexity of a shape S with respect to a uni-
versal Turing machine U is the minimal size of a program for U that outputs S
as a list of coordinates. We denote the Kolmogorov complexity of S by K(S).

Definition 18. The CRN-TAM complexity of a shape S at temperature τ is the
minimum complexity of any CRN-TAM program that constructs S. We denote
the CRN-TAM complexity of S at temperature τ as Kτ

CT(S).

Notice that since we may efficiently simulate low-temperature programs at
higher temperatures, Kτ

CT(S) ≥ Kτ+1
CT (S).

Theorem 10. For any shape S, the CRN-TAM complexity of s2(S) at any tem-
perature τ ≥ 1 satisfies:

Kτ
CT(s2(S)) ∈ Θ

(
K(S)

log K(S)

)

We will prove this theorem as two lemmas: Lemma 3 for the upper bound,
and Lemma 4 for the lower bound.
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Lemma 3. For any shape S, there is a CRN-TAM program P = (S, T,R, 1, I)
with

K1
CT(P ) ∈ O

(
K(S)

log K(S)

)

that constructs S at scale 2.

Proof. Inspired by Soloveichik and Winfree [29], our proof gives a construction
of a CRN-TAM program that satisfies the complexity bound. Our construction
uses a simulated Turing machine and a finite set of “path building” tiles.

In our construction, we reduce the problem of constructing S at scale 2 to
the problem of constructing a path around a spanning tree of S. To do this, we
use a set of tiles Tc that consists of all possible tiles with exactly two strength-1
bonds with the same label. These tiles can produce any path in the 2D lattice;
the specific path is determined by the sequence in which tiles are released.

Let U be a universal Turing machine, and define ψ to be a program for U
that outputs the Z

2 coordinates of each point in S. We construct a program ϕ
for U that does the following:

1. Run ψ to obtain the lattice points in S.
2. From some point in S, use a depth-first search to find a spanning tree of S.
3. Construct a path W ⊆ Z

2 through the (scale 2) lattice that walks around the
perimeter of the spanning tree.

Our CRN-TAM program uses the construction from Theorem 8 to simulate
U running ϕ. We may assume without loss of generality that U acts on a binary
alphabet. Then, using the implementation of U , the CRN-TAM program begins
at the start of path W and releases appropriate tiles one-by-one to fill in the
lattice sites occupied by W . This construction process is illustrated in Fig. 4.

Since every shape has a spanning tree, we may always find one with depth-
first search. Furthermore, notice that when we scale the spanning tree to scale
2, there is always space for a perimeter walk W . Thus, P will construct s2(S).

Now, suppose that ψ is a Kolmogorov-optimal Turing machine program that
outputs S, so that |ψ| = K(S). Since all parts of ϕ other than ψ are independent
of the shape S and thus constant, |ϕ| = Θ(|ψ|) = Θ(K(S)). By encoding ϕ using
the optimal encoding construction in Theorem9, which works at temperature 1,
we can encode and unpack ϕ in O(|ϕ|/ log |ϕ|) = O(K(S)/ log K(S)) CRN-TAM
program complexity. Using the construction from Theorem8, we may simulate
the universal Turing machine U with constant program complexity. The com-
plexity of P is the sum of the complexity of the universal Turing machine and
the encoding of the optimal program, so

K1
CT(P ) = O(1) + O

(
K(S)

log K(S)

)
= O

(
K(S)

log K(S)

)

��

Lemma 4. For any shape S, every CRN-TAM program P = (S, T,R, τ, I) that
constructs S at fixed scale m has Kτ

CT(P ) log Kτ
CT(P ) ∈ Ω(K(S)).
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Fig. 4. Conceptual illustration of the construction of a shape S at scale 2 using a
Kolmogorov-optimal CRN-TAM program.

Proof. First, note that there is a constant size Turing machine program psim that
takes a binary description of a CRN-TAM program and simulates its operation
by traversing the reachability graph of states. We construct our program so that
it will output the coordinates of the occupied squares of the final assembly if the
program constructs a shape. If the program stops without meeting this condition,
it indicates failure.

By efficiently encoding the signals, tiles, reactions, and initial state in binary,
we can represent a CRN-TAM program P = (S, T,R, τ, I) as input to our sim-
ulator in O(Kτ

CT(P ) log Kτ
CT(P )) bits. By definition,

K(S) ≤ |psim| + O(Kτ
CT(P ) log Kτ

CT(P )) = O(Kτ
CT(P ) log Kτ

CT(P ))

��
With Theorem 10, we demonstrate the algorithmic power of the CRN-TAM

over previous models of tile-based self-assembly. Although an analogous result
holds for the aTAM, it allows construction of a shape S only at a (possibly
very) large scale c, which is polynomial in the runtime of U on ψ [29]. Constant-
scale construction of algorithmic shapes with Kolmogorov-optimal tile sets is
possible with temperature programming; however, these results require a number
of temperature changes that is linear in the size of the shape [30]. The number
of temperature changes should be a part of the natural definition of program
complexity for temperature programming models. In contrast, the CRN-TAM
permits construction of shapes at scale 2 with a Kolmogorov-optimal program
complexity.
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In the full version of this paper, we will present a result that extends this
construction to give Kolmogorov-optimal assembly of a large class of shapes at
scale one. It remains open to show that all shapes can (or cannot) be constructed
by Kolmogorov-optimal CRN-TAM programs.

7 Open Questions

Although we have demonstrated the power and expressiveness of the CRN-TAM
for Turing-universal computation and Kolmogorov-optimal construction, many
open questions about the capabilities and limits of the CRN-TAM remain.

In our work, we have not considered the time complexity of computation or
construction. In fact, many of our constructions proceed quite slowly under Gille-
spie dynamics, primarily because they take one step at a time—according to the
rather limited notion of deterministic behavior used here to make our construc-
tions simple to analyze. There are therefore numerous open questions related
to the time complexity of CRN-TAM programs, such as how fast a shape can
be constructed or a computation can be performed. Chemistry is an inherently
parallel computational medium, yet all of our constructions have been designed
to engineer around this parallelism through carefully enforced determinism. How
to exploit the parallelism of chemistry to provide additional expressive power in
the CRN-TAM remains to be seen.

Lastly, an important task is to develop molecular motifs that can implement
CRN-TAM programs. While designs may build on the work by Zhang et al. [33],
in which a DNA strand displacement circuit controlled the activation of DNA
double-crossover tiles, there is a substantial difficulty with implementing the
CRN-TAM based on the crystal-growth mechanism inherent in simple tile self-
assembly: because (unlike in the aTAM) our model does not hold tile concentra-
tions constant, we cannot justify low-error rates based on assuming that growth
occurs near the (concentration-dependent) melting temperature for attachment
by τ bonds. A more suitable molecular implementation might be based on com-
ponents that become activated for further assembly by some configurational
change, such as the elegant one-dimensional hybridization chain reaction [10]
as generalized for a restricted class of signal tiles [15]. Such mechanisms are
well suited to τ = 1 seeded assembly, but have not yet been generalized for
two dimensional assembly or for τ = 2. We expect that the chief difficulty in a
molecular implementation of CRN-TAM programs will be enforcing the proper
interactions between tiles and their removal signals. However, previous work
on implementing stack machines with DNA strand displacement reactions [19]
proposed an implementation of a similar mechanism for handshaking assembly
steps when constructing one-dimensional assemblies. Known implementations for
many CRN-TAM features plausibly suggest the existence of a physical imple-
mentation of the CRN-TAM.
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